搜索资源列表
out-matlab SVM回归,用于实现支持向量机
- SVM回归,用于实现支持向量机(SVM )回归拟合的问题。可以用来做一些短期的预测,如短期负荷预测。-svm regression, used to implement support vector machine (SVM ) Regression fitting problems. Can be used to do some short-term forecasts, such as short-term load forecasting.
SVM.SVM支持向量机的时间序列预测
- SVM支持向量机的时间序列预测、分类、自回归代码,SVM
sh_SVM_regression
- 支持向量机 ,做股票预测,一元线性回归 -Support vector machines, regular activity prediction, linear regression
bishechengxu
- 关于支持向量机分类、回归、模糊支持向量机的程序-On support vector machine classification, regression, fuzzy support vector machine procedures
LS-SVMlab1[1].5
- 基于支持向量机回归的LS-SVM的matlab源码-Based on Support Vector Machine LS-SVM regression in matlab source
LS_SVM
- 最小二乘支持向量机,用于多元非线性回归分析,非线性拟合与预测-Least squares support vector machine for multi-linear regression analysis, nonlinear fitting and prediction
SVM_lzb1p0
- 支持向量机matlab程序 (1) Main_SVC_C.m --- C_SVC二类分类算法 (2) Main_SVC_Nu.m --- Nu_SVC二类分类算法 (3) Main_SVM_One_Class.m --- One-Class支持向量机 (4) Main_SVR_Epsilon.m --- Epsilon_SVR回归算法 (5) Main_SVR_Nu.m --- Nu_SVR回归算法-Support vector machine matlab procedur
OnlineSVR_Matlab_7.0_2006_CodeManual
- 一个适合进行在线支持向量机回归辨识的Matlab源程序。-Matlab programs for on-line regression identification using Support Vector Machine
SVM_luzhenbo
- 支持向量机工具箱,可进行分类,预测等,实现了四种支持向量机工具箱的分类与回归算法,有实例-Support Vector Machine Toolbox, it can conduct classification, prediction and so on, implementation of the four support vector machine toolbox classification and regression algorithm, has examples of
svm_regressive
- 基于支持向量机(SVM)回归的MATLAB演示程序-Based on support vector machine (SVM) regression of the MATLAB demo
mat
- 支持向量机非线性回归通用MATLAB源码本源码可以用于线性回归、非线性回归、非线性函数拟合、数据建模、预测、分类等多种应用场合-Universal non-linear regression support vector machine MATLAB source code of this source can be used for linear regression, nonlinear regression, nonlinear function approximation, data m
Regression
- 本程序是关于支持向量机回归的算法程序,希望对大家有用。--
svm_predic.m
- 应用支持向量机回归和相空间重构对时间序列进行预测-Support vector machine regression and time series phase space reconstruction on forecast
SVM_Short-term-Load-Forecasting
- 优秀论文及配套源码。首先阐述了负荷预测的应用研究现状,概括了负荷预测的特点及其影响因素,归纳了短期负荷预测的常用方法,并分析了各种方法的优劣;接着介绍了作为支持向量机(SVM)理论基础的统计学习理论和SVM的原理,推导了SVM回归模型;本文采用最小二乘支持向量机(LSSVM)模型,根据浙江台州某地区的历史负荷数据和气象数据,分析影响预测的各种因素,总结了负荷变化的规律性,对历史负荷数据中的“异常数据”进行修正,对负荷预测中要考虑的相关因素进行了归一化处理。LSSVM中的两个参数对模型有很大影响,
SVMcgForRegress
- matlab环境下编成的用于回归的支持向量机源程序-svm for regression
Matlab-svm
- 支持向量机是一种新的回归方法,特别适用于非线性,改程序实现了支持向量机非线性回归-surport vector machine to non-linear regression
libsvm-3.22
- 支持向量机最优参数确定、支持向量机回归、分类(Optimal parameter determination of support vector machines)
SVR_Lib
- 运用支持向量进行回归预测,包含对数据的训练和回归值得预测(The use of support vector regression prediction, including training and regression of data, is worth prediction)
LSSVM
- 用最小二乘支持向量机实现负荷预测功能,计算各个误差指标的值,并输出负荷预测对比曲线,误差曲线等(The load forecasting function is realized by least square support vector machines (LSSVM). The values of each error index are calculated, and the load forecast contrast curve and error curve are also ob
多输出支持向量回归
- (13.1)具有多分段损失函数的多输出支持向量机回归算法(MSVR algorithm with piecewise loss function): (13.2)MSVR。