搜索资源列表
PCA
- 应用PCA进行特征提取和降维,可以应用于数据挖掘,机器学习,人脸识别上!-Application of PCA for feature extraction and dimensionality reduction can be applied to data mining, machine learning, face recognition on!
datamining
- 通用机器学习及数据挖掘的特征提取及贝叶斯网络程序-General machine learning and data mining feature extraction and the bayesian network program
Machine-learning-and-data-mining
- 机器学习与数据挖掘:方法和应用,本书分为5个部分,共18章,较为全面地介绍了机器学习的基本概念,并讨论了数据挖掘和知识发现中的有关问题及多策略学习方法,具体地阐述了机器学习与数据挖掘在工程设计,文本、图像和音乐,网页分析、计算机病毒和计算机控制,医疗诊断、生物医疗信号分析和水质分析中的生物信号处理等方面的应用情况。-Machine learning and data mining: methods and applications, the book is divided into five p
mi
- 通用机器学习及数据挖掘的特征提取及贝叶斯网络程序-通用机器学习及数据挖掘的特征提取及贝叶斯网络程序.-Common machine learning and data mining feature extraction and Bayesian network program- common machine learning and data mining of feature extraction and Bayesian network program.
BPMIP
- 该代码利用BP_MIP算法实现数据挖掘中多示例机器学习方法中示例包的标记分类。-BP_MIP Using the BP-MIP algorithm to get the labels for bags in testBags
miGraph
- 该代码实现MI_graph算法来实现数据挖掘中多示例机器学习的示例分类过程。-This function is the main function for calling migraph method to use this function, LibSVM should be available.
relief
- relief 特征选择 机器学习 数据挖掘 特征权重-Relief feature selection machine learning data mining feature weights
用matlab实现谱聚类算法
- 用于数据挖掘学习,matlab实现机器学习领域的谱聚类算法。提供详细的代码。
machine-learning
- 模式识别和机器学习,数据挖掘方向的专业性程序代码-Pattern recognition and machine learning, data mining direction of the professional code
DeepLearnToolbox_CNN_lzbV2.0
- DeepLearnToolbox_CNN_lzbV2.0 深度学习,卷积神经网络,Matlab工具箱 参考文献: [1] Notes on Convolutional Neural Networks. Jake Bouvrie. 2006 [2] Gradient-Based Learning Applied to Document Recognition. Yann LeCun. 1998 [3] https://github.com/rasmusberg
c4.5
- C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法。C4.5的目标是通过学习,找到一个从属性值到类别的映射关系,并且这个映射能用于对新的类别未知的实体进行分类。(C4.5 is a series of algorithms used in machine learning)