搜索资源列表
AnAdaptiveFourDimensionalKalmnFilteforDopplerFrequ
- 用泰勒级数展开的形式表示高动态的载波相位参数, 给出了对高动态载体和各阶频率参数 估计的四阶加权扩展卡尔漫滤波器(EKF) , 以及实现高动态跟踪滤波器必须的状态转移矩阵和动 态噪声协方差矩阵. 计算机模拟实验分析了对载波相位和各阶频率的跟踪结果.-Taylor series expansion with the form that the carrier phase high-dynamic parameters, given the high-order dynamic freq
check_cpty
- 对一个给定的状态转移矩阵求其联合分布矩阵,联合熵,平均互信息量以及共熵。可以画出平均互信息量的曲线-For a given state transition matrix of their joint distribution matrix, the joint entropy, mutual information and the average total entropy. Can draw the curve of the average mutual information
markov
- 实现简单的马尔科夫链过程,近需要输入初始状态数组和转移概率矩阵即可 同时也将其转换成.jar文件,方便java程序员调用-The realization of a simple Marco chain process
LevelElmulaterysh
- 目标运动和卡尔曼跟踪的仿真程序,给出了系统状态转移矩阵和测量过程,以及协方差和增益。通过绘图得出仿真轨迹和真实轨迹的平均误差。有助于研究目标航迹跟踪-Target motion and Kalman tracking simulation program, the system state transition matrix and measurement process, as well as the covariance and gain. Obtained by drawing the a
IMM
- 交互多模型算法是一种用模型集描述系统各个时刻的状态,相对于单模型系统有很大的适应性,其模型集之间的切换是一个马尔科夫过程,按照状态转移概率矩阵进行切换的-Interacting multiple model algorithm is a model used to describe the system sets the status of each moment, as opposed to a single model system has great flexibility, the mo
autosat
- 这是一个进行卫星轨道精确轨道预报的程序。导航卫星;自主轨道预报;状态转移矩阵-This is a precise orbit satellite orbit prediction program. Navigation Satellite autonomous orbit prediction state transition matrix
satid
- 这是一个进行卫星轨道预报的程序。导航卫星;自主轨道预报;状态转移矩阵。无错误-This is a satellite orbit prediction program. Navigation Satellite autonomous orbit prediction state transition matrix. No error
Baum_Welch-algorithm
- 用Baum-Welch算法来迭代估计一个隐马尔科夫模型(HMM)的初始状态概率分布以及其状态转移概率矩阵。其中文件有mainfile_B_W.m为主函数,Baum_Welch.m为Baum-Welch算法迭代函数,Forward_variable.m与Backward_variable.m与Gamma_variable.m与Ksi_variable.m是需要计算的四种因子,B_pdf.m为混淆散射概率密度函数。-It s Baum-Welch algorithm for iteratively
markov
- 求解马尔科夫过程的一个过程,输入转移强度矩阵后,可以求得状态概率-A process of solving Markov process, the intensity of the input transfer matrix, we can obtain the state probability
MCMCMH
- 马尔科夫蒙特卡洛,通过MH算法对初始状态和状态转移矩阵进行预测-Markov Chain Monte Carlo, by MH algorithm to the initial state and the state transition matrix to predict
kalman
- 通用的kalman滤波程序,适用于状态转移矩阵时变的情况,注解清晰明了-kalman filter with matlab
MCM
- 划分预测对象状态 : 根据预测的目的划分 计算初始概率 : 根据历史数据计算状态概率 计算状态转移概率,构造转移概率矩阵P 根据转移概率进行预测,Pij 表示由状态 i 转移到状态 j 的概率 按最大可能性作为选择原则:选择(Pj1,Pj2,…, PjN )中最大者为预测结果。 计算状态转移概率时,最后一个数据不参加计算(To predict the state of an object: divide it according to the purpose of prediction