搜索资源列表
CH7
- 7.5 积分一步的变步长龙格-库塔法grkt2.c 7.6 积分一步的变步长基尔法ggil1.c 7.7 全区间积分的变步长基尔法ggil2.c 7.8 全区间积分的变步长默森法gmrsn.c 7.9 积分一步的连分式法gpbs1.c 7.10 全区间积分的连分式法gpbs2.c-7.5 Integral-step variable step-queue grid- Kutta method grkt2.c 7.6 Integral variable step by step
NJCSTCFSN
- 用数值积分算法计算hankel变换,并采用连分式逼近-Hankel transform by continued fraction
calculate--formula-of-Mie-theory
- 根据Mie 散射理论,采用连分式递推算法,进行了微粒散射的数值模拟。借助特殊函数库得出简化的Mie 散射理论的数值模拟方法,省去了推导的复杂性,同时提高了计算程序运算速度。-In this paper, scattering phase function ofparticle radius is calculated by recursive formula of Mie theory
GenHaoEr_v1
- 采用连分式的方法,计算根号式。给出了根号2的具体计算。更改迭代次数,可获得更高的精度。-Using continued fraction method to calculate the square root formula. The calculation gives the root of 2. Change the number of iterations, achieve higher accuracy.