搜索资源列表
-
0下载:
模式识别课程作业-神经网络分类IRIS数据集.共两层网络,程序有详细注释。程序结果将输出到EXCEL文件中,也很详细。-Course work in pattern recognition- Neural Network Classification IRIS data set. A total of two networks, a detailed program notes. Program results will be output to the EXCEL file, and very
-
-
0下载:
matlab应用实例:基于神经网络的分类,用的是iris数据集做例子-matlab applications: classification based on neural network, using the iris data set an example
-
-
1下载:
bp神经网络实现iris数据分类,非常好用,,,,,,,,,,,,,,,,,,,matlab-bp neural network to achieve the the iris classification of data, and very easy to use,,,,,,,,,,,,,,,,, matlab
-
-
0下载:
hossein alipoor,iris,neural network,mlp
-
-
0下载:
有导师学习神经网络的分类——鸢尾花种类识别-Supervised learning neural network classification- iris species identification
-
-
0下载:
BP神经网络实现iris数据分类,,非常的好用啊。。。效果杠杠的-BP neural network to achieve the iris data classification, and very easy to use. . . Leverage
-
-
0下载:
有导师学习神经网络的分类——,实现鸢尾花种类识别功能-There tutor learning neural network classification- to achieve iris species recognition
-
-
0下载:
In this report, we devise a methodology for identifying the species of an iris amongst 3 based on 4 distinctive features. We first cover the constitution of the data set and input patterns. We then determine the layout and structure of the neural net
-
-
0下载:
进行Iris数据分类实验,使用matlab构建bp神经网络-Iris data classification experiments, using matlab to build the bp neural network
-
-
0下载:
进行Iris数据分类实验,使用matlab构建rbf神经网络-Iris data classification experiments, using matlab to build the rbf neural network
-
-
0下载:
This project uses a neural network to determine to which species a certain iris (defined by several measurements) belongs to.
-
-
0下载:
BP神经网络分类iris数据,对函数y=sqrt(x)的逼近,里面包含了iris数据。-BP neural network classification of iris data, the function y=sqrt (x) approximation, which contains the iris data.
-
-
0下载:
有导师学习的神经网络分类-鸳尾花种类识别-Supervised learning neural network classifier- iris species identification
-
-
0下载:
这是BP神经网络进行iris数据分类的代码-This is the code BP neural network iris classification
-
-
0下载:
使用iris鸢尾花数据集测试rbf神经网络的分类效果(Using iris iris dataset to test the classification effect of RBF neural network)
-