搜索资源列表
Newmark_koohi
- This m.file is intended to perform the numerical integration of a structural system subjected to an external dynamic excitation. The integration scheme utilized for this alysis is the newmark alpha-beta method.
wilson_koohi
- This m.file is intended to perform the numerical integration of a structural system subjected to an external dynamic excitation. The integration scheme utilized for this analysis is the newmark alpha-beta method.
collocation_Newmark_wilson
- This m.file is intended to perform the numerical integration of a structural system subjected to an external dynamic excitation. The integration scheme utilized for this analysis is the newmark-wilson alpha-beta-theta method(collocation method).
NonlinearAdvectionSI
- 用于解算一维非线性平流扩散方程的半隐式差分格式算法-Computing the numerical solution of nonlinear advection equation via a semi-implicit scheme.
1Dnumerical-reservoir-simulation
- 油藏一维一相数值模拟,使用不同方法进行比较有,显式差分格式,隐式差分格式,及精确解的比较-One phase of one-dimensional numerical reservoir simulation, using different methods compared, explicit difference scheme, implicit difference scheme, and the comparison of exact solution
yinshishi
- 清华大学版 偏微分方程数值解 中扩散方程的隐式差分格式程序-Tsinghua University Edition partial differential equations numerical solution of the diffusion equation implicit difference scheme program
5
- Numerical simulation using the classical expression for the form of the second space derivative and the fractional differential scheme for the Grunwald–Letnikov operator-Numerical simulation using the classical expression for the form of the second
UPW_utux0
- function [ue,un]=UPW_utux0(v,dt,t) 一个简单的双曲型偏微分方程: ut + ux = 0 初始条件为: u(x,0) = 1, x≤0 0, x>0. 边界条件为: u(-1,t)=1,u(1,t)=0. 本题要求: 使用迎风格式,选择 v=0.5, 计算并画出当dt=0.01和0.0025时, 方程在t=0.5,x在(-1,1)时的数值解和精确解 输入: v--即a*dt/dx
UPW_utux0_2
- function [ue,un]=UPW_utux0_2(v,dt,t) 一个简单的双曲型偏微分方程: ut + ux = 0 初始条件为: u(x,0) = exp[-10(4x-1)^2] 边界条件为: u(-1,t)=0,u(1,t)=0. 本题要求: 使用迎风格式,选择 v=0.5, 计算并画出当dt=0.01和0.0025时, 方程在t=0.5,x在(-1,1)时的数值解和精确解 输入: v--即a*dt/dx
Riemann-matlab.doc
- 用cfd解1一维Riemann问题,采用二阶精度两步差分格式进行数值求解-Cfd solution with a one-dimensional Riemann problem, the use of second-order accurate numerical solution of the two-step difference scheme
DYakonov
- matlab; 偏微分方程数值解; DYakonov交替方向隐格式;(Numerical Solution of Alternating Directional Implicit Scheme for Solving Partial Differential Equation)
burgers equation
- 自己收集的一些关于Burgers方程数值解法的matlab程序,有五点差分法、L-W格式、WENO格式等。(Some matlab programs about numerical solution of Burgers equation collected by myself include five-point difference method, L-W scheme, WENO scheme and so on.)