搜索资源列表
matlabtosolve
- 基于MATLAB实现的说话人识别程序,分别用bp、pnn、som、rbf、lvq等算法,对语音文件进行训练和测试,效果不错。~..~ 下面说明一下bprengong程序: 数据分别用来训练和测试两部分。 具体程序分为两部分,第一部分为:计算识别模型 变量v是mfcc处理以后的矢量。因为数据可能长短不一,所以放在同一进行截取。p的每一行代表一个语音数据(共15个)。变量Pr为每一行的最大最小值。变量T为目标值。输出神经元个数为15。 在训练阶段,如果用于训练的输入训练样本的类
RBF_Network
- 用RBF神经网络算法对样本数据进行分类,再对训练数据进行分类的程序-RBF net-work used in classification
rbf_atrifical_neual_networks
- ① 样本数据从MATLAB命令窗口或新建一M文件作为数据输入文件,样本输入变量名为samin,样本输出变量名samout 样本个数和每个样本的维数可任意,样本输出的个数与样本个数应一致,即保证每个样本都对应一个期望输出,但每个输出的维数不要求与输入的维数相同,可任意; ② 聚类中心的个数(即基函数的个数)可根据实际情况调整;同样可调整参数的还有重叠系数、聚类中心最大更新次数、聚类中心更新终止误差; ③ 训练结束后进行测试时,要求输入的测试数据与样本具有相同的维数,测试数据的个数可任意;