搜索资源列表
changweifenfangchengshuzhijie
- 自编常微分方程初值问题的常用算法,包括折线法、改进欧拉法、4阶龙格-库塔法-Self-compiled initial value problems of ordinary differential equations commonly used algorithms, including the broken line method, improved Euler' s method, 4-order Runge- Kutta method
RK4
- 数值分析中,显式4阶龙格-库塔法(Runge-Kutta)是用于求常微分方程数值解的重要迭代法。本算法优点是可以求高阶常微分方程(或多变量微分方程组)的数值解,并且可缩减求解时间-Runge-Kutta method
matlab-3-Runge-Kutta-4-lRunge-Kutta
- 三、四阶龙格库塔算法编程方法,matlab自带效果类似,仅供参考-Third, fourth-order Runge-Kutta algorithm programming method, similar to the effect matlab comes for reference only
Runge-Kutta-4
- 用Runge-Kutta 4阶算法对初值问题按不同步长进行求解,用于观察稳定区间的作用。-With a four order Runge- Kutta algorithm for initial value problems in asynchronous long, used to observe stability range.
Runge-Kutta
- 龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。本程序为4阶龙格-库塔法的matlab文件,用于求解微分方程。-Runge- Kutta (Runge-Kutta) method is a widely used in engineering high-precision single-step algorithm. This program is a 4-order Runge- Kutta method matlab file for solving diff
the-algorithm-of-4th-R-K
- 定步长的4阶龙格库塔算法源代码,计算速度快,适用于计算精度要求不太高的情况。-Fixed step size fourth-order Runge-Kutta algorithm source code, calculate the speed, accuracy requirements are not applicable to the case too.