搜索资源列表
@polynomial
- VC维理论和结构风险最小化准则是统计学习理论中的重要内容,基于这一理论的支持向量机算法由于具有好的泛化性能受到重视,并被研究用于文本分类问题.基于多项式核的研究工作认为SVM的泛化能力不受多项式阶数的影响,并且能够处理很高维的分类问题,用于文本分类无需进行特征选择.研究发现,随着多项式核阶数的升高,SVM文本分类器会出现过学习现象,并且特征数越多越明显,特征选择是必需的.通过估计函数集的VC维,基于结构风险最小化理论对此问题进行分析,得出的结论跟实验结果相符.
mill
- 包含了很多分类算法,有SVM,knn,决策树等,还有文档说明-Contains a lot of classification algorithms, there is SVM, knn, decision tree and so on, have documented
SVM-hssvm1.0.1
- HSSVM是一个用超球SVM(Hyper-Sphere Support Vector Machines)模型求解多分类问题的工具包,采用Java语言实现。开发该程序的主要目的,是利用超球SVM求解模型代替传统上借助于解二分类问题的经典SVM模型来求解多分类问题。本文将论述该程序的主要实现细节,包括相关算法及设计原理的描述。-HSSVM is an ultra ball SVM (Hyper-Sphere Support Vector Machines) to solve multi-classi
85375532SimpleMKL
- SimpleMKL是一种多核分类的算法,SVM的思想(SimpleMKL is one of the multi kernel algorithm)
SVM
- 利用三次二分类SVM实现三分类SVM,可以用自己的数据,完美运行。(Using the three-category SVM to implement the three-class SVM, you can use your own data to run perfectly.)