搜索资源列表
-
2下载:
LIBSVM 是台湾大学林智仁 (Chih-Jen Lin) 博士等开发设计的一个操作简单、易于使用、快速有效的通用 SVM 软件包,可以解决分类问题(包括 C- SVC 、n - SVC )、回归问题(包括 e - SVR 、 n - SVR )以及分布估计( one-class-SVM )等问题,提供了线性、多项式、径向基和 S 形函数四种常用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概率估计等。,LIBSVM is林智仁Taiwan Univ
-
-
0下载:
图像分类中的交叉验证方法,比如说,一个训练集集合,为了得到其中参数的较准确值,就可以使用此类算法-Image Classification Based on cross-validation method, for example, a collection of training set, in order to obtain more accurate values of these parameters, you can use these algorithms
-
-
0下载:
The code implements a probabilstic Neuraol network for classification problems trained with a Leave One Out Cross Validation Scheme in Matlab (version 7 or above). The following toolboxes are required: statidtics, optimization and neural networks.
-
-
1下载:
MATLAB cross-validation tool for classification and regression v0.1
FEATURES:
+ K-fold cross validation.
+ Arbitrary train and prediction functions with parameters can be used.
+ Arbitrary loss function can be used.
+ Wrappers for
-
-
0下载:
训练错误率和交叉验证错误率相等,在样本比较大时,这个结果是可以预期的;训练错误率一般低于测试错误率,但是当样本数据比较少时,实验也出现了意外,样本多的那组测试错误率比样本少的训练错误率还要小;在本实验中,同组数据的交叉验证错误率比独立测试错误率高,这个反常现象是因为样本的原因所致,交叉验证的样本小,而独立测试时所用训练样本数目大,因而出现这种情况。分类线上,fisher准则是一条直线,而贝叶斯分类器实际上是一个类似椭圆的封闭曲线;很明显,贝叶斯分类器比fisher分类器要好。-Training
-
-
0下载:
Successful classification ratio dynamic over the number of terminal nodes: cross-validation
-
-
0下载:
This a code for doing cross validation in a case of Batik classification-This is a code for doing cross validation in a case of Batik classification
-
-
0下载:
基于交叉验证的支持向量机算法,程序内可实现选择最佳参数,并对输入数据分类输出-Cross-validation based on support vector machine algorithm, can be realized within the program to the best parameters, and input data classification output
-
-
2下载:
SVM分类器的matlab实现,针对提供的花的特征分类,并交叉验证(The matlab implementation of SVM classifier aims at providing the feature classification of flowers and cross validation)
-
-
0下载:
二分类支持向量机交叉验证调参并统计分类准确率(Cross validation of two classification support vector machines and statistical classification accuracy)
-
-
2下载:
实现PCA分类.1、进行PCA的交叉检验。2、对数据进行PCA降维。3、进行分类,交叉检验。4、构造训练和测试的数据(PCA classification,Cross validation of PCA,PCA dimensionality reduction for data.)
-