搜索资源列表
数据挖掘中K均值算法实现
- 数据挖掘中K均值算法的实现用MATLAB编写-data mining to the K-means algorithm to achieve prepared using MATLAB
K-均值聚类算法
- K-均值聚类算法的matlab源程序,K-均值聚类算法的matlab源程序
基于matlab的K均值聚类程序
- 基于matlab的K均值聚类程序。其中用IRIS数据进行验证,得到了很好的结果。文件中包含了演示后的结果图,Matlab-based K-means clustering procedure. Which use IRIS data verification, have had good results. File contains the results of the demonstration plan
knn.kmeans.fisher
- 常用的分类方法,包括最近邻(NN),k均值(kmeans),k近邻,Fisher线性判别。-Commonly used classification methods, including nearest-neighbor (NN), k the mean (kmeans), k neighbors, Fisher linear discriminant.
K-MEANS-MATLAB
- 用matlab7.0编写的k均值算法,参数可调节,很好用-K-MEANS MATLAB
k-mean k均值聚类程序
- k均值聚类程序,虽然matlab中也有自带的,但是这个速度不错。-program for k means used for cluster
kMeansCluster
- K-均值聚类,比较好的聚类方法,应用广泛-K-means clustering, a better clustering method, widely used
cluster
- k均值聚类算法源码(matlab) k均值聚类算法源码(matlab)-k-means clustering algorithm source code (matlab) k-means clustering algorithm source code (matlab)
K-Means
- 较简单的KMeans聚类算法实现,编程语言matlab-Clustering KMeans relatively simple algorithm, programming language matlab
K-means_Matlab
- K-均值算法的Matlab源代码,比较简短-Matlab source code of K-means algorithm
kmean_zmx_try
- k-means Cluster,kmean_zmx_try.rar,k均值聚类算法的matlab源代码-k-means Cluster,kmean_zmx_try.rar
1
- 模式识别分层聚类、k—均值算法,支持向量机、线性判别、判别代码、ppt-Pattern recognition hierarchical clustering, k-means algorithm, support vector machines, linear discriminant, discriminant code, ppt
proj10-01
- 在试验中编写程序实现了K均值聚类算法,K均值聚类的原理是:在训练样本中找到C个聚类中心,每个聚类中心代表一个类的中心。然后将样本归类到与其最近的聚类中心的那一类。 C的选择是通过先验知识或经验选取的。聚类中心是通过算法迭代求得的。-In the test preparation process to achieve a K means clustering algorithm, K means clustering principle is: in the training samples to
k-means
- 名为k-means的MATLAB函数,实现k均值算法。输入矩阵X,w,输出最终估计值和聚类的标识数字。-Called the k-means of the MATLAB function, to achieve k means algorithm. Input matrix X, w, the output value of the final estimates and cluster identification number.
HCM
- HCM是模糊聚类,k均值算法 -hcm
ISODATA MATLAB编码
- 迭代自组织数据分析算法(Iterative Self-Organizing Data Analysis Techniques Algorithm,ISODATA)与K均值算法有相似之处,即聚类中心的位置同样是通过样本均值的迭代运算决定。不同的是,这种算法在运算的过程中聚类中心数目不是固定不变的,而是反复进行修改,以得到较合理的类别数K,这种修改通过模式类的合并和分裂来实现,合并和分裂在一组预先选定的参数指导下进行。
k-means
- k均值,数据已经有了,主要用于分类,美列都是一类数据,只用了其中一部分,数据是自己编的。(K mean, data already exists, mainly for classification, the United States column is a kind of data, only a part of the data is their own series.)
kmean
- 对大量的数据通过matlab软件,运用k均值算法进行分类,(Using the matlab software to use the k-means algorithm to classify the large amount of data,)
kmeansuanfa
- 对大量的数据通过matlab软件,运用k均值聚类算法进行分类,(By using matlab software, a large number of data are classified by using k-means clustering algorithm.)
ksuanfa
- 对大量的数据通过matlab软件,运用k均值聚类算法进行分类,上传文件中含例子(A large number of data are classified by matlab software, using k-means clustering algorithm to classify and upload files with examples)