搜索资源列表
kmeans070622
- 这是一个关于K均值的聚类算法希望对大家有用
K-均值聚类算法
- K-均值聚类算法的matlab源程序,K-均值聚类算法的matlab源程序
kmean
- 包括K-均值聚类算法的思想介绍,kmeans的MATLAB代码,c语言代码、c++代码。-Including the K-means clustering algorithm introduced the idea, kmeans of MATLAB code, c language code, c++ code.
pso-clustering
- 基于粒子群的改进K均值聚类算法源代码。适用于MATLAB7.1。-Improved PSO-based K means clustering algorithm source code. For MATLAB7.1.
cluster
- k均值聚类算法源码(matlab) k均值聚类算法源码(matlab)-k-means clustering algorithm source code (matlab) k-means clustering algorithm source code (matlab)
K-Means
- 较简单的KMeans聚类算法实现,编程语言matlab-Clustering KMeans relatively simple algorithm, programming language matlab
K_average
- matlab实现的k均值聚类算法,可以实现对大量数据的有效分类-matlab implementation of the k-means clustering algorithm, can achieve a large amount of data on an effective classification
K-means_Matlab
- K-均值算法的Matlab源代码,比较简短-Matlab source code of K-means algorithm
zfk_example
- 聚类分析里的k均值(kmeans)算法的matlab实现,是老师即将出的书里,我给写的例子,大家看看吧。 -Where k-means cluster analysis (kmeans) algorithm matlab implementation, a teacher is leaving the book, I give examples of writing, we take a look at bar.
imgkmeans
- 将K均值算法用于图像分割,输入的是彩色图像,转换为灰度图像进行分割,输出结果为灰度图像.利用灰度做为特征对每个像素进行聚类,由于光照等原因,有时应该属于一个物体的像素,其灰度值也会有很大的差别,可能导致对该像素的聚类发生错误.在分割结果中,该物体表面会出现一些不同于其它像素的噪声点,因此,算法的最后,对结果进行一次中值滤波,以消除噪声,达到平滑图像的作用-The K means algorithm for image segmentation, the input is a color imag
KMEANS
- K-Means动态聚类算法源程序。可以用来发现社团结构。-Dynamic K-Means clustering algorithm source code. The structure can be used to find associations.
1
- 模式识别分层聚类、k—均值算法,支持向量机、线性判别、判别代码、ppt-Pattern recognition hierarchical clustering, k-means algorithm, support vector machines, linear discriminant, discriminant code, ppt
k-means
- 名为k-means的MATLAB函数,实现k均值算法。输入矩阵X,w,输出最终估计值和聚类的标识数字。-Called the k-means of the MATLAB function, to achieve k means algorithm. Input matrix X, w, the output value of the final estimates and cluster identification number.
HCM
- HCM是模糊聚类,k均值算法 -hcm
ISODATA MATLAB编码
- 迭代自组织数据分析算法(Iterative Self-Organizing Data Analysis Techniques Algorithm,ISODATA)与K均值算法有相似之处,即聚类中心的位置同样是通过样本均值的迭代运算决定。不同的是,这种算法在运算的过程中聚类中心数目不是固定不变的,而是反复进行修改,以得到较合理的类别数K,这种修改通过模式类的合并和分裂来实现,合并和分裂在一组预先选定的参数指导下进行。
kmeans
- 基于k均值的无监督聚类算法,输出有各个样本的类别标签,目标函数在每次迭代后的值,聚类中心以及聚类区间。内有测试数据,点击 test.m 可以完美运行。(The unsupervised clustering algorithm based on K means outputs the class labels of each sample, the value of the target function after each iteration, the clustering center a
K均值对iris数据集聚类
- k-means算法对irisdata数据集进行聚类(The k-means algorithm clustering the irisdata datasets)
kmeansuanfa
- 对大量的数据通过matlab软件,运用k均值聚类算法进行分类,(By using matlab software, a large number of data are classified by using k-means clustering algorithm.)
ksuanfa
- 对大量的数据通过matlab软件,运用k均值聚类算法进行分类,上传文件中含例子(A large number of data are classified by matlab software, using k-means clustering algorithm to classify and upload files with examples)
k均值聚类
- 通过比较自编MATLAB 的k-means 算法程序和SPSS 中自带的k-means聚类工具,对两个数据集聚类,并分析了聚类结果。(By comparing the k-means algorithm program of self-compiled MATLAB with the K-means clustering tool of SPSS, two data sets are clustered and the clustering results are analyzed.)