搜索资源列表
stprtool.rar
- 统计模式识别工具箱(Statistical Pattern Recognition Toolbox)包含: 1,Analysis of linear discriminant function 2,Feature extraction: Linear Discriminant Analysis 3,Probability distribution estimation and clustering 4,Support Vector and other Kernel Machines,
kernel_pca
- Kernel principal component analysis (kernel PCA) [1] is an extension of principal component analysis (PCA) using techniques of kernel methods. Using a kernel, the originally linear operations of PCA are done in a reproducing kernel Hilbert space with
Kernel_PCA
- 基于核的主分量分析方法的提出者亲自写的程序(基于MATLAB-a MATLAB m-file of Kernel PCA
KPCA
- 在ORL或Yale标准人脸数据库上完成模式识别任务。用PCA与基于核的PCA(KPCA)方法完成人脸图像的重构与识别试验. -Or Yale in the ORL face database, complete the standard pattern recognition tasks. With the PCA and kernel-based PCA (KPCA) method to complete the reconstruction of face image and reco
Kernel-PCA
- 基于核方法的主成分分析matlab源代码,比较经典,推荐学习。-Method based on kernel principal component analysis matlab source code, more classic, recommended learning.
PCA
- 基于PCA的人脸识别 Matlab代码 两种方法 KL 和kernel-PCA-based face recognition Matlab code
kernelPCA
- kernel PCA MATLAB code
kPCA_v3.1
- Computation of Kernel PCA
function_kpca
- 使用核函数,在matlab环境下实现非线性主成分分析(Using kernel function to realize nonlinear principal component analysis in Matlab environment.)