搜索资源列表
一个 PCA 算法的matlab程序
- 主成分分析(PCA)算法是用于简化数据的一种技术,对于某些复杂数据就可应用主成分分析法对其进行简化。-principal component analysis (PCA) algorithm is used to simplify the technology of data, For some complex data can be applied Principal Component Analysis streamline its.
PCA-method-for-fault-diagnosis-routine-five(includ
- 用于故障诊断的PCA方法例程5个(含KPCA),利用PCA(主元分析)方法或者KPCA方法,进行工业系统的故障诊断程序,有详细的注释说明-PCA method for fault diagnosis routine five (including KPCA), using PCA (principal component analysis) method or KPCA method, industrial process fault diagnosis, a detailed explanat
pcafacerecognition
- 基于主成分分析(PCA)的人脸识别系统 利用2D PCA算法求对训练集向量进行降维的降维矩阵,最近邻法测试对测试集识别的精度-pca face recognition
LDA
- matlab线性判别分析函数,首先需要用PCA进行数据压缩,然后提前特征变量,进行判别分析-Matlab for LDA
nnpca
- 利用主分量分析(PCA)进行模式识别,包括主分量分析运算的主要函数,以及相关应用的例子。-Using principal component analysis (PCA) for pattern recognition, including the principal component analysis of the main function of computing, and related application examples.
PCA
- 用MATLAB编写的人脸识别算法,对PCA主成分分析进行了改进-Face recognition algorithm using MATLAB, the PCA principal component analysis has been improved
GUI-PCA
- 自己写的matlab GUI界面,可进行PCA分析及LDA分类,附有光谱数据模拟-Write your own matlab GUI interface of PCA and LDA can be classified with spectral data simulation
isuhjuiu
- 应用小区域方差对比,程序简单,对信号进行频谱分析及滤波,isodata 迭代自组织的数据分析,是学习PCA特征提取的很好的学习资料,相关分析过程的matlab方法,迭代自组织数据分析。- Application of small area variance comparison, simple procedures, The signal spectral analysis and filtering, Isodata iterative self-organizing data analysi
canxtqyi
- 对信号进行频谱分析及滤波,是学习PCA特征提取的很好的学习资料,这个有中文注释,看得明白,通过matlab代码,感应双馈发电机系统的仿真,相关分析过程的matlab方法。- The signal spectral analysis and filtering, Is a good learning materials to learn PCA feature extraction, The Chinese have a comment, understand it, By matlab code
jbhmyhax
- DC-DC部分采用定功率单环控制,仿真效果非常好,借鉴了主成分分析算法(PCA),阵列信号处理的高分辨率估计,线性调频脉冲压缩的Matlab程序,利用自然梯度算法,对信号进行频谱分析及滤波。- DC-DC power single-part set-loop control, Simulation of the effect is very good, It draws on principal component analysis algorithm (PCA), High-resolutio
wdjhyamm
- 用于特征降维,特征融合,相关分析等,在matlab R2009b调试通过,用于建立主成分分析模型,滤波求和方式实现宽带波束形成,结合PCA的尺度不变特征变换(SIFT)算法,各种kalman滤波器的设计,对信号进行频谱分析及滤波。- For feature reduction, feature fusion, correlation analysis, In matlab R2009b debugging through, Principal component analysis model f
wgaawrzw
- 是学习PCA特征提取的很好的学习资料,在matlab环境中自动识别连通区域的大小,对信号进行频谱分析及滤波,从先验概率中采样,计算权重,有详细的注释,具有丰富的参数选项。- Is a good learning materials to learn PCA feature extraction, Automatic identification in the matlab environment the size of the connected area, The signal spectra
apjzwngm
- IMC-PID是利用内模控制原理来对PID参数进行计算,GSM中GMSK调制信号的产生,LCMV优化设计阵列处理信号,借鉴了主成分分析算法(PCA),matlab小波分析程序,阵列信号处理的高分辨率估计,实现了对10个数字音的识别程。- The IMC- PID is using the internal model control principle for PID parameters is calculated, GSM is GMSK modulation signal generati
smhhbpys
- 基于互功率谱的时延估计,含噪脉冲信号进行相关检测,matlab编写的元胞自动机,matlab小波分析程序,在MATLAB中求图像纹理特征,是学习PCA特征提取的很好的学习资料,双向PCS控制仿真。- Based on the time delay estimation of power spectrum, Noisy pulse correlation detection signal, matlab prepared cellular automata, matlab wavelet anal
wmmgqizy
- 模式识别中的bayes判别分析算法,进行波形数据分析,基于SVPWM的三电平逆变的matlab仿真,有PMUSIC 校正前和校正后的比较,包括AHP,因子分析,回归分析,聚类分析,对信号进行频谱分析及滤波,借鉴了主成分分析算法(PCA),保证准确无误,是学习通信的好帮手。- Pattern Recognition bayes discriminant analysis algorithm, Waveform data analysis, Based on SVPWM three-level in
vcrebnww
- IMC-PID是利用内模控制原理来对PID参数进行计算,供做算法研究人员参考,有较好的参考价值,结合PCA的尺度不变特征变换(SIFT)算法,matlab小波分析程序,重要参数的提取,使用混沌与分形分析的例程。- The IMC- PID is using the internal model control principle for PID parameters is calculated, Algorithm for researchers to do reference, There a
PCA_DeNoise
- 再用主成分分析方法进行信号噪声去除。文件中包含三个子函数:1.Normalize_InputData,规则化输入数据;2.PCA_Reduce_Dimension,实现数据降维处理;3.PCA_Filter_Noise,实现噪声去除(the principal component analysis method for signal noise removal. The file contains three sub-functions: 1.Normalize_InputData, regul
MATLAB_PCA
- 利用MATLAB进行主成分分析代码,利用MATLAB自带主成分分析函数进行主成分分析,只有湘西注释。(Using MATLAB for principal component analysis code, using MATLAB with principal component analysis function for principal component analysis, only Xiangxi Notes.)
matlab
- 用于脑电信号分析的matlab算法,对数据进行PCA处理及SVM分类。(The matlab algorithm for EEG signal analysis performs PCA processing and SVM classification on data.)
基于PCA的SVM分类
- 选择“BreastCancer”数据集,使用支持向量机(SVM)对其进行分类。作为对比,第一次对特征集直接进行支持向量机分类,第二次对特征集进行主成分分析法的特征提取后,再对特征提取后的特征集进行支持向量机分类。并且对比和分析了两次分类的结果。(The BreastCancer data set is selected and classified by Support Vector Machine (SVM). For comparison, the first time the featur