搜索资源列表
ltticeclosedegree
- 首先将测量值与估计值都进行模糊化,然后计算测量值与估计值之间的格贴近度, 利用贴近度来描述各个传感器在测量中的权重,最后得到融合结果。-First, the measured values and estimated values are fuzzified, and then calculated between measured and estimated values of the lattice close to the degree of closeness to describe t
test_gpsins_source
- hybrid fusion of multi sensors navigation
information-fusion-algorithm
- 本文利用模糊理论中的高斯隶属 度函数来获得模糊观测下具有概率特性的似然函数,并且由此似然函数得到每个传感器提供信息的可信度;再将各传感器的可 信度转化成基本概率赋值函数即mass 函数;最后利用证据理论对多传感器信息进行融合。对目标识别的仿真试验表明该方法获 得的结果比直接结果具有更高的精度和可靠性。-The method uses fuzzy theory in the Gaussian fuzzy membership function to obtain a probabl
xiaoboronghe
- 它是指将来自同一目标的不同传感器的信息通过一定的算法融合到一幅图上,从而获得比在单幅图上更完整-It is to point to will come from the same target of different sensors through certain information fusion algorithm to a picture on, to get in on the drawing than single more complete
D_2CFAR
- 两部传感器,相互采用CA-CFAR性能分析,并比较了不同融合准则下的性能-Two sensors each other using the CA-CFAR performance analysis, and compare the performance of different fusion criterion
nonlinear_measure
- 代码实现多源信息融合中的针对多个传感器同时检测一个目标时的非线性测量和分布式融合。-The code can realize the non-linear measure and data fusion, in multi-source information fusion, when multiple sensors detect a target measurement.
p222
- 卡尔曼滤波器完成多传感器融合算法,不同机器人的不同传感器对足球位置进行估计,融合不同传感器数据得到精确估计-Kalman filter to complete the multi-sensor fusion algorithm, the different sensors of the robot football position estimates, the integration of different sensor data accurate estimate of
MMWIR
- 红外与雷达的异类传感器异步数据融合,采用序惯融合结构-Infrared and radar sensors heterogeneous asynchronous data fusion, using Sequential fusion structure
code
- 1.CAmodelfusion.m 主要功能: (1)完成两个传感器各自对基于CA模型的目标状态的Kalman估计; (2)实现传感器的局部状态估计的SCC和CI融合算法的实现; (3)画出局部估计和两种融合估计的位置、速度、加速度的误差; (4)画出局部估计和两种融合估计的协方差椭圆。 2.CVmodelfusion.m 主要功能: 功能与CAmodelfusion.m基本相似,差异在于实现基于CV模型的估计和估计融合。 3.CovInter.m
matlab程序
- 主要功能: 1.完成传感器对目标状态的kalman滤波估计; 2.对传感器的状态估计进行SCC和CI融合; 3.画出位置及速度的估计和融合误差曲线、真实航迹及融合后航迹、K=1时刻的协方差椭圆(Main functions: 1. The Kalman filter estimation of the target state is completed; 2. The state estimation of sensors is fused by SCC and CI; 3. Draw the