搜索资源列表
partial_differential_equation
- 求解线性双曲型偏微分方程,有迎风格式和Las-Friedrichs两种差分格式,matlab源程序-Linear hyperbolic partial differential equations, there are upwind and two Las-Friedrichs difference scheme, matlab source
NHT1d
- 采用以下四种格式:中心差分、一阶迎风、混合格式和QUICK格式对一维稳态无源项的对流-扩散方程进行求解-The following four formats: central difference, the first order upwind, QUICK format mixed formats and one-dimensional steady-state passive entry of convection- diffusion equations were solved
exactyf
- 迎风格式求解poisson方程及方程的精确解,矩形区域,狄利克雷边界情况!-Upwind scheme for solving poisson equation and exact solutions of equations, rectangular area, Dirichlet boundary conditions!
Hyperbolic-equation
- matlab求解变系数双曲方程,使用迎风格式-matlab solves the hypolic equation using upwind method
CFD_matlab
- 基于matlab的,关于lax-wendroff,lax-friedrichs,一阶迎风格式,一阶warming-beam格式的计算流入门简单算例-simple examples of lax-wendroff, lax-friedrichs, first-order upwind, first-order warming-beam based on MATLAB.
UPW_utux0
- function [ue,un]=UPW_utux0(v,dt,t) 一个简单的双曲型偏微分方程: ut + ux = 0 初始条件为: u(x,0) = 1, x≤0 0, x>0. 边界条件为: u(-1,t)=1,u(1,t)=0. 本题要求: 使用迎风格式,选择 v=0.5, 计算并画出当dt=0.01和0.0025时, 方程在t=0.5,x在(-1,1)时的数值解和精确解 输入: v--即a*dt/dx
UPW_utux0_2
- function [ue,un]=UPW_utux0_2(v,dt,t) 一个简单的双曲型偏微分方程: ut + ux = 0 初始条件为: u(x,0) = exp[-10(4x-1)^2] 边界条件为: u(-1,t)=0,u(1,t)=0. 本题要求: 使用迎风格式,选择 v=0.5, 计算并画出当dt=0.01和0.0025时, 方程在t=0.5,x在(-1,1)时的数值解和精确解 输入: v--即a*dt/dx
NHT_52
- 本程序实现了一维稳态无源项的对流-扩散方程的数值解法,采用的离散格式包括中心差分,一阶迎风,混合格式与QUICK格式。并画出其与精确解的比较。-This program implements a one-dimensional steady-state convection passive items- diffusion equations numerical solution, a discrete format used include center differential, the f
Rimann_solver
- 求解一维激波管问题等产生的偏微分方程组的几种数值差分格式算法。(Several Numerical Difference Schema Algorithms for Solving Partial Differential Equations of One - dimensional Shock Wave Tube Problems.)
upwind
- 解决课本上微分方程迎风格式,编写相关matlab代码。(Differential equation upwind scheme)