搜索资源列表
BE_shooting
- 使用欧拉方法实现打靶法,解决带有边界条件的布拉修斯方程。-Simple shooting with Euler method to the Blasius equation
ordinary-differential-equation
- 本次课程设计中,主要讨论了常微分方程的初值问题数值解法。文章主要分3大块,分别是:1.简单介绍几种常微分方程的初值问题数值解的求法,给出其算法流程图和相应matlab程序。2.通过运用典型的数值解法如Eulor方法,改进Eulor方法,Runge-Kutta方法求解具体常微分方程并分析对比方法收敛阶、稳定性。3.进一步去用以上三种方法求解Lotka-Volterra方程,分析食饵与捕食者模型,得出相关结论。-The curriculum design, focused on the numeri
xianxingdabafa
- 利用线性打靶法计算变系数的微分方程,并画图-The second- order differential equation with variable coefficient is solved by linear target method, and the content is detailed
rechuandaofangcheng
- 热传导方程采用前向差分法求解,内容详细,通俗易懂,并配图像-The heat conduction equation is solved by the forward difference method, the content is detailed, easy to understand, and with the image
奇非线性参数激励n=1完善版
- 运用超越摄动同伦法,求解动力学方程,并进行动力学方程结果的图形化(The transcendental perturbation homotopy method is used to solve the dynamic equation, and the graphical results of the dynamic equation are obtained)