搜索资源列表
recommender-
- Collaborative Filtering,基于Collaborative Filtering,建立主动为用户推荐商品的推荐系统。实现参考协同过滤算法或它的优化,实现并改进算法,计算出每个客户对未购买的商品的兴趣度,并向客户主动推荐他最感兴趣的N个商品。实验数据可以从MovieLens.com下载。要求使用至少10,000不同用户的数据,至少1000个不同的movie。-Collaborative Filtering,Based Collaborative Filtering, the in
user-based
- 使用的数据集是BX-CSV-Dump,基于用户的协同过滤,有详细代码注释-英语 Data sets used are BX-CSV-Dump, user-based collaborative filtering, a detailed code comments
doubanWebSpider
- 快速搭建Spring + SpringMVC + Mybatis平台 使用ALS协同过滤推荐模型构建图书推荐模型 使用Python搭建推荐服务,与Java服务用Json进行数据交互 NLTP情感分析 -using Spring+ SpringMVC+ Mybatis recommend system
cf_matrix-decomposition
- 现在比较常用的一种给予举证分解的协同过滤算法,用于个性化推荐-Now more commonly used as a collaborative filtering algorithm decomposition give evidence for personalized recommendation
cf
- 现在比较常用的一种传统的协同过滤算法,用于个性化推荐 最基础的-Now more commonly used as a traditional collaborative filtering algorithms for the most basic personalized recommendation
usercf
- 基于用户的协同过滤算法(Python实现) ,很好的学习协同过滤算法的资料-User Based Collaborative Filtering
Recommender
- 基于MovieLens数据,通过计算余弦相似度,Python语言构建的一个简单协同过滤推荐系统,并给出RMSE等测评结果-Based MovieLens data by calculating the cosine similarity, Python language to build a simple collaborative filtering systems, and the like are given RMSE uation results
CF
- Python实现协同过滤算法,即Collaborative Filtering(CF),数据集为MovieLens电影推荐和书籍推荐数据集-Python implementation of collaborative filtering algorithm, namely Collaborative Filtering (CF), the data set is recommended MovieLens movie and book recommendations datasets
itemcf
- Hadoop平台上的物品协同过滤程序,使用Java语言编写(A Item Collaborate Filter Program based on Hadoop platform written by Java)
NNRec-master
- 基于自编码器的协同推荐算法,使用python实现(Collaborative recommendation algorithm based on self encoder, using Python implementation)
协同过滤推荐
- 使用协同过滤算法产生推荐矩阵,进而产生推荐结果