搜索资源列表
xyle
- 拉普拉斯降维方法,是非线性数据降维方法,通过构建相似关系图来重构数据局部流形结构特征。-Laplace dimension reduction method is non-linear data dimensionality reduction method, by constructing a graph similar to reconstruct the structure of local manifoldof the data.
CodeGPCAPDASpectral
- 广义主成分聚类,用于高维数据降维聚类分析,比主成分分析更好一点-Generalized principal component clustering analysis is used to reduce the dimension of high-dimensional data, which is better than the principal component analysis.
PCA-AND-PNN
- 应用主成分分析对数据降维,将得到的数据用于概率神经网络训练,进行模式识别。对于一组新数据,先计算主成分得分,再输入训练好的概率神经网络,就会得到识别结果,即改组数据属于何种类别。-Principal component analysis of the data reduction, data will be obtained for the probabilistic neural network training, pattern recognition. For a new set of d
PAC--Datamining
- PCA降维算法应用大数据挖掘中,在大数据环境下实现数据的降维,可按需要自行修改代码-PCA dimensionality reduction algorithm in data mining, in the big data environment for data dimension reduction, according to need to modify the code itself
mani
- 此代码是关于流形学习,数据降维,代码中含有的主要方法是PCA,KPCA,MDS,KMDS,Laplacian等等,且代码作了可视化处理,界面效果完美-This code is on the manifold learning, data dimensionality reduction, the main method code is contained in PCA, KPCA, MDS, KMDS, Laplacian, etc., and the code visualization ma
dimensionality-reduction-and-k-means
- 1.使用k-svd对数据进行稀疏表示,降维 2.使用k-means对上述数据聚类-1.use k-svd to reduce the dimensions of data 2.clster the data by k-means
LDA
- LDA是监督式的降维算法,输入时需要为每一个数据打上标签信息。最多可以降到n-1维(n为数据点个数)-LDA Algorithm is used to realize dimensionality reduction. It can be used in the amount of projects such as face recognition.
NJU-SSDR
- 半监督判别分析(SSDR),是南京大学数据挖掘研究所提出的一种新的半监督降维算法,对于数据挖掘和类别样本的获取有着十分重要的借鉴价值。-A semi-supervised discriminant analysis (SSDR), is one of the types of data mining research institute of nanjing university puts forward new a semi-supervised dimensionality reductio
lwpr
- LWPR 局部加权投影回归算法,是一种高效的数据降维方法,也能用于预测方法研究。 -LWPR is an effective dimensionality reduction approach. It can be used for prediction.
Data-dimensionality-reduction
- 该压缩文件为部分数据降维方法,有LTSA、HHLLE、ISOMAP、LLTSA、LLP-The compressed file for the partial data dimensionality reduction method, there are LTSA, HHLLE, ISOMAP, LLTSA, LLP
code
- ssmfa将高光谱数据从高维观测空间投影到低维流形空间,达到约减数据维数的目的(ssmfa hyperspectral data is projected from the high dimensional observation space into the low dimensional manifold space, so as to reduce the dimensionality of data)
局部线性嵌入
- 利用局部线性嵌入算法将高维数据映射到低维空间中,达到降维效果;(The local linear embedding algorithm is used to map the high dimensional data into the low dimensional space to achieve the effect of reducing the dimension.)
postarderhash
- 对输入的高维特征向量进行pca降维后输出低维的特征向量()
LDA_ FDA_with_tutorial
- LDA降维是常用的降维手段之一,是常用的有监督学习降维工具。这个文件对其产生W后的使用进行了简要说明,使用W进行最终的降维可以得到十分漂亮的分析结果(在数据分布符合假设分析的情况下。)(LDA dimension reduction is one of the commonly used dimensionality reduction methods. It is a commonly used supervised learning dimensionality reduction tool
PCA
- 本程序可以对高维数据进行降维,便于得到主成分进行后续分析。(This program can reduce dimension of high-dimensional data and facilitate principal component analysis for subsequent analysis.)
PCA TEST
- 主成分分析程序,能够对高维数据降维分析,适用于高维特征降维,大数据分析(The principal component analysis program can analyze dimensionality reduction of high-dimensional data.)
PCA+mnist
- 基于python,利用主成分分析(PCA)和K近邻算法(KNN)在MNIST手写数据集上进行了分类。 经过PCA降维,最终的KNN在100维的特征空间实现了超过97%的分类精度。(Based on python, it uses principal component analysis (PCA) and K nearest neighbor algorithm (KNN) to classify on the MNIST handwritten data set. After PCA dime
核主元分析(Kernel principal component analysis ,KPCA)在降维、特征提取以及故障检测中的应用
- 主要功能有: (1)训练数据和测试数据的非线性主元提取(降维、特征提取) (2)SPE和T2统计量及其控制限的计算 (3)故障检测 KPCA的建模过程(故障检测): (1)获取训练数据(工业过程数据需要进行标准化处理) (2)计算核矩阵 (3)核矩阵中心化 (4)特征值分解 (5)特征向量的标准化处理 (6)主元个数的选取 (7)计算非线性主成分(即降维结果或者特征提取结果) (8)SPE和T2统计量的控制限计算