搜索资源列表
SVM
- 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类、以及回归分析。-In the field of machine learning, support vector machine SVM (Support Vector Machine) is a supervised learning model, typically used for pattern recognition, classification, an
apriori
- 经典Apriori算法的优化,并在商场消费者消费数据集上进行测试,挖掘频繁模式-Optimization of classical Apriori algorithm, and tested in store consumer data sets, frequent pattern mining
prefixspan
- 经典序列模式挖掘算法prefixspan的python实现-Classic sequence pattern mining algorithm prefixspan
Linear-classifier
- 本资源用matlab代码实现了模式识别的线性分类器,对于线性可分的模式能够正确分类。-The resources used matlab code to achieve a pattern recognition linear classifier, for linearly separable model can correctly classified.
k-means-cluster
- 分类算法中k均值分类算法,可以用于简单的模式识别中去。-Classification algorithm of k-means classification algorithm, which can be used in a simple pattern recognition.
pattern-identification
- 主成分分析、Fisher判别法与支持向量机在模式识别中的应用-Application of principal component analysis, Fisher discriminant analysis and support vector machine in pattern recognition
machine-learning-(2)
- 模式识别和机器学习,数据挖掘方向的专业性程序代码-Pattern recognition and machine learning, data mining direction of the professional code
data--mining
- 模式识别和机器学习,数据挖掘方向的专业性程序代码-Pattern recognition and machine learning, data mining direction of the professional code
ml
- 模式识别和机器学习,数据挖掘方向的专业性程序代码-Pattern recognition and machine learning, data mining direction of the professional code
ml2
- 模式识别和机器学习,数据挖掘方向的专业性程序代码-Pattern recognition and machine learning, data mining direction of the professional code
Apriori-Algorithm
- 频繁模式挖掘的算法Apriori算法,用C++语言实现。-frequent pattern mining
classifier
- 一种分类算法工具箱,可以进行人脸识别,对模式识别和分类算法很有用-A classification algorithm toolbox, face recognition, pattern recognition and classification algorithms useful
PCA-AND-PNN
- 应用主成分分析对数据降维,将得到的数据用于概率神经网络训练,进行模式识别。对于一组新数据,先计算主成分得分,再输入训练好的概率神经网络,就会得到识别结果,即改组数据属于何种类别。-Principal component analysis of the data reduction, data will be obtained for the probabilistic neural network training, pattern recognition. For a new set of d
Bayesian-networks-for-Data-Mining
- 贝叶斯网络的介绍及其在数据挖掘和模式识别中的应用-Introduction Bayesian network and its application in data mining and pattern recognition
AprioriAlgorithm.tar
- apriori的c#实现代码,利用该算法实现频繁模式的挖掘和关联规则的发现,此经典算法的类接API可以嵌入到自己开发的应用程序中应用。-the complementation of Apriori algorithm using c#
voice_identify
- 语音识别代码,平台为LDV7+SYN6288的语音识别驱动程序,本程序为口令模式。-voice identify
knn_demo
- 可以demo的KNN分类器,对模式识别十分重要的作用,有着较好的分类效果,可以帮助新手更好的理解KNN原理,对人脸识别有着很好的演示作用。-Can demo KNN classifier, the pattern recognition is an important role, has a good classification effect, can help beginners a better understanding of KNN principle, has a very good
distanceKNN
- 可以分别设置度量距离的KNN分类器,有欧式和马氏距离。对模式识别十分重要的作用,有着较好的分类效果,可以帮助新手更好的理解KNN原理,对人脸识别有着很好的演示作用。-Distance can be set respectively KNN classifier, style and markov distance. For pattern recognition is an important role, has a good classification effect, can help be
Kmeans
- 按照模式识别一书,实现k均值聚类的matlab版本代码-According to the book Pattern Recognition , implement k-means clustering matlab version of the code
knn
- 模式识别中的k近邻算法,经过测试,运行结果很好。 最小距离分类器 : 它将各类训练样本划分成若干子类,并在 每个子类中确定代表点 。测试样本的类别则以其与这些代表点距离最近作决策。该方法的缺点是所选择的代表点并不一定能很好地代表各类,其后果将使错误率增加。(The k nearest neighbor algorithm in pattern recognition has been tested and the result is very good. Minimum distance c