搜索资源列表
matlablms
- LMS算法MatLab实现 LMS自适应滤波器是使滤波器的输出信号与期望响应之间的误差的均方值为最小,因此称为最小均方(LMS)自适应滤波器。
MATLAB====LMS
- LMS自适应滤波器是使滤波器的输出信号与期望响应之间的误差的均方值为最小,因此称为最小均方(LMS)自适应滤波器。
speech-enhancement
- 本资料涵盖了几乎所有的语音增强方面的方法,主要有谱减法,听觉掩蔽,最小均方误差,维纳滤波以及一些非主流的方法,这些对于研究语音增强的人来说是很有帮助的-The data cover almost all aspects of speech enhancement methods, the main spectral subtraction, auditory masking, minimum mean square error, Wiener filtering as well as some
LMS
- LMS算法实现自适应滤波 clear close all clc N=10000 设置仿真长度 信号产生参数设定 a1=-0.195 a1=-1.5955 a2=0.95 R0=[1,a1,a2 a1,1+a2,0 a2,a1,1] p=[1,0,0] r=inv(R0)*p 计算理论自相关函数 R=[r(1),r(2) r(2),r(1)] 生成理论自相关矩阵 p1=[r(2),r(3)] 生成互相关 h=inv(R)
lmssnr
- 一个用matlab来实现的最小均方误差的信噪比和信干噪比-Using matlab to achieve the minimum mean square error, signal to noise ratio and signal to interference noise ratio
Ch-2.-Matlab-Codes
- 无源定位的一些仿真代码,包括时TOA、TDOA、DOA、RSS。2维的线性、非线性、极大似然算法和克拉美罗下界、均方误差的代码-Passive targeting some simulation code, including when TOA, TDOA, DOA, RSS. Two-dimensional linear, nonlinear, maximum likelihood algorithm and Cramer-Rao lower bound, mean square error
mine-fisher-pca
- PCA分类,用于较好的去噪降维,matlab的各种自适应仿真分析。。自适应信息处理的算法、方案繁多,究其实质可归纳为遵循最小均方误差(Least Mean Square,LMS)准则及最小二乘-PCA classification for better denoising dimensionality reduction, a variety of adaptive matlab simulation analysis. . Adaptive information processing alg
vciuk
- 最小均方误差等算法的MSE的计算,Gabor小波变换与PCA的人脸识别代码,基于SVPWM的三电平逆变的matlab仿真。- Minimum mean square error MSE calculation algorithm, Gabor wavelet transform and PCA face recognition code, Based on SVPWM three-level inverter matlab simulation.
vv631
- 使用matlab实现智能预测控制算法,最小均方误差(MMSE)的算法,多机电力系统仿真及其潮流计算。( Use matlab intelligent predictive control algorithm, Minimum mean square error (MMSE) algorithm, Multi-machine power system simulation and flow calculation.)