搜索资源列表
示列
- 解线性方程组的好程序。特别是数值分析,更具有优势-solution of linear equations of the program. In particular, numerical analysis, but also has advantages
calmatrix
- 矩阵计算,包括了矩阵的加减乘除,还可以实现对角化,对一次解方程组非常有帮助-matrix, which includes a matrix arithmetic, but also to achieve keratosis, a solution of equations very helpful
goss
- 用GOSS解线性方程组 Dim i As Integer 循环变量 Dim j As Integer 循环变量 Dim k As Integer 循环变量 -with Goss solving linear equations Dim i As Integer Dim cycle variable j As In teger cycle variables As Integer Dim k cycle variables
xianxingfangchengzu
- 该小程序是用C编写的用于解线形方程组,算法才用的是消元法。学习之用。-the small procedure is used for the preparation of C Solutions linear equations, the algorithm will use the elimination method. Learning.
qzyxqf
- 一个C语言写的全主元消去法解方程组的源程序,结构清晰,一看就懂。
Gauss
- Gauss跌代法解线性方程组的程序 可以用以参考
LU
- Lu 方法解线性方程组的程序 可以参考一下
include
- jacobi方法解线性方程组 可以参考一下
线形方程组求解
- 用Gauss消元法、选列主元的Gauss消元法求线性方程组(1)的解,要求输出增广矩阵的消元变化过程。 用Gauss消元法、选列主元的Gauss消元法求线性方程组(1)的解,要求输出增广矩阵的消元变化过程 42x1+2x2+3x3=3 x1+7x2+7x3=1 -2x1+4x2+5x3=-7 算法思想:Gauss消元法是将线性方程组化为上三角形线性方程组,然后再用一个回代过程求这个上三角形线性方程组的解;选主元的Gauss消元法是在Gauss消元法上增加了选列主元
yuanma
- 数值计算方法解方程组实例,利用Gauss-Seidel迭代法解方程组
gsxc
- 用高斯消去法求线性方程组的解.
JacobiMPI
- Jacobi_MPI 基于MPI的并行算法,用Jacobi迭代法解方程组
SolveChaoDingEquations
- VC++编程实现解超定方程组。是对之前程序的修改版。
jie
- 在最优潮流中用列主元素消去法解方程组(用c语言)
matrix99~1
- 实现矩阵算法的小程序,针对解线性方程组而作的一个小程序。-matrix algorithm to achieve the small program against solution of linear equations for a small procedure.
gauss
- 并行高斯消去法解线性方程组几阶的都可以的-Parallel Gaussian elimination solution of linear equations can be a few bands of
sample-rate-conversion
- 内容包括:解线性代数方程组,插值,数值积分,特殊函数,函数逼近,特征值问题,数据拟合,方程求根和非线性方程组求解-VB -Include: solving linear algebraic equations, interpolation, numerical integration, special functions, function approximation, eigenvalue problem, the data fit the equation and non-linear eq
least-squares-fitting-orthogonal
- 用这种算法编程,不用解方程组,只须用递推公式,并且当循环次数增加一 次时,只要把循环增加一次-Programming in this algorithm, without solution equations, just use recursion formula, and when cycles increaseTime, as long as to increase circulation. The rest remains the same.
(赛德尔+雅可比)迭代法(解方程组)
- 用C++描述赛德尔和雅克比迭代法解方程组(Solving the equations with Seidel and Jacobi method)
非线性方程组求解
- 利用改进的遗传算法求解非线性方程,遗传算法得到全局最优解作为初值寻找局部最优解(Using the improved genetic algorithm to solve the nonlinear equation, the genetic algorithm gets the global optimal solution as the initial value to find the local optimal solution)