搜索资源列表
feixianxingzuixiaoerchengyouhua
- 用G-N法求解非线性最小二乘优化问题 用修正G-N法求解非线性最小二乘优化问题 用L-M法求解非线性最小二乘优化问题 -GN method for solving nonlinear least squares optimization problems using a modified GN method for solving nonlinear least squares optimization problems using LM method for solving non
svm
- 支持向量机模型用于预测分析效果显著,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中-Support vector machine model is used to predict significant effect in solving small sample, nonlinear and high dimensional pattern recognition exhibit many unique advantages, and
neural-network
- 基于BP神经网络的非线性分类,及运用其解决异或问题,并对Iris数据进行分类-Nonlinear classification based on BP neural network and the xor problem, and its appplication on the data of Iris.
ceemdan
- CEEMDAN方法,用于解决EMD分解过程中的模态混叠问题,同常用的EEMD方法相比,其有效减少了迭代次数,增加了重构精度,更加适合非线性信号的分析。(CEEMDAN method is used to solve the modal aliasing problem in the EMD decomposition process. Compared with the commonly used EEMD method, it effectively reduces the number of