搜索资源列表
200711912175433168
- tsp蚂蚁算法的最优化的方法matlab语言-tsp ant algorithm optimization method Matlab language
ant
- 蚁群算法( ant colony algorithm) 是由意大利学者 Dorigo 等人[1 ,2 ] 于20 世纪90 年代初期通过模拟自然界 中蚂蚁集体寻径的行为而提出的一种基于种群的启发 式仿生进化系统。蚁群算法包含两个基本阶段:适应阶 段和协作阶段。在适应阶段,各候选解根据积累的信息 不断调整自身结构。在协作阶段,候选解之间通过信息 交流,以期望产生性能更好的解,这类似于学习自动机 的学习机制。蚁群算法最早成功应用于解决著名的旅 行商问
tsppso
- 用PSO(粒子群算法)求解TSP问题的程序
TSP
- 很好很重要的十进制遗传算法的源代码,C#的-Decimal very important source of genetic algorithms, C#' s
tsp
- tsp算法,遗传算法解决tsp问题,用到MATLAB编程-tsp algorithm, genetic algorithm to solve the tsp problem, use MATLAB Programming
TSP
- 基于蒙特卡洛的TSP问题算法,方便学习使用。主要是近似算法-Based on the TSP Monte Carlo algorithm
Ga-TSP-wenti
- 用遗传算法求出TSP问题,可以再excel里换自己想要的坐标(x,y) 就可以了-TSP problem is obtained using genetic algorithms, can excel in the other they want the coordinates (x, y) on it.
genetic-algorithm-to-solve-TSP
- 用遗传算法求出TSP问题当中的问题,很好用!-TSP problem which was obtained using genetic algorithms, and easy to use!
TSP---Matlab
- 将遗传算法用于旅行商问题求最佳路径的算法,程序简单易懂-The genetic algorithm for traveling salesman problem the optimal path algorithm, program is simple and easy to understand
work
- 基于混合粒子群算法的TSP搜索算法,遗传初始化-Genetic algorithms of the the TSP search algorithm based on hybrid particle swarm of the igonr matab the math you off dosmin
ga_tsp
- 一个非常有用的用遗传算法求解tsp的小例子,简洁易懂。-A very useful small example using genetic algorithms to solve tsp, concise and easy to understand.
YiQun
- 用蚁群算法来解决TSP问题,压缩包内附有源代码,可以正常运行-Ant colony algorithm to solve TSP problems, compressed package containing source code, can be normal operation
TSP-(2)
- 模拟退火与遗传算法的程序,很好用的程序,好使-Simulated Annealing
chapter4
- TSP算法 基于遗传算法的TSP算法实现对结果的优化-Based on the TSP algorithm to optimize the TSP algorithm and genetic algorithm
tsp-GA
- 该程序解决了用遗传算法解决10个城市的tsp问题,城市的距离随机生成,可自行修改-This program solves the ten cities with genetic algorithm to solve TSP problem, the distance of the city is randomly generated, are free to modify
Cpp1
- 遗传算法TSP,旅行商问题,1. 假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求所经过的路径路程尽量短。-Genetic algorithm TSP, Traveling Salesman Problem, 1. Suppose you have a traveling businessman to visit n cities, he must choose the path to go, a re