搜索资源列表
0-9(Speech-Recogenition)用matlab仿真0到9十个数字的语音识别
- 用matlab仿真0到9十个数字的语音识别 1、对语音的WAV文件和LAB文件进行处理,产生十个文件,每个文件对应于一个数字,存贮着该数字的波形文件。(shujuzhengli.m) 2、分别利用上面十个文件训练出十个HMM模板,具体方法是:首先将语音的波形文件分帧,以128个点为一帧,帧移为64,每一帧通过mfcc.m计算出13个系数,随着波形的长度不同,一个语音文件可以计算得到13*N个系数,截取13*15的矩阵(mfcc系数)用作训练数据。一般一个HMM模板用20组mfcc系数
jiyushilianglianghuadeshuohrshibe
- 基于矢量量化的说话人识别本文从语音信号的预处理开始分析, 主要研究了特征参数的选择、提取、及识别算法,应用全极点模型,提取了语 音信号的线性预测倒谱系数和美尔倒谱系数,并进一步获得其一阶差分,将倒 谱系数与其一阶差分结合在一起形成新的特征参数。在识别算法方面,本文对 矢量量化的方法进行了研究,用Matlab语言实现了说话人识别系统的仿真与验 证。实验证明这种参数与单纯的线性预测倒谱系数和美尔倒谱系数相比更为有 效。- speech paper,help you study
CAMDF
- 语音信号处理中基音周期的提取算法。运用循环的平均幅度差分法实现的。-Speech signal processing algorithm for pitch period extraction. The average rate of use of cyclic difference method realized.
mfcc
- 本段程序实在MATLAB环境下对输入的语音序列x进行MFCC参数的提取,返回MFCC参数和一阶差分MFCC参数。-Voice input sequence x extracted MFCC parameters, return parameters and the first-order difference MFCC MFCC parameters
matlab
- 语音信号的短时分析,主要包括:分帧、短时能量、短时平均幅度、短时过零率、短时自相关函数、短时幅度差、倒谱、复倒谱、lpc系数、lpc谱估计等(The short-time analysis of speech signal mainly includes: frame, short-time energy, short time average amplitude, short-time zero crossing rate, short-time autocorrelation functio