搜索资源列表
goss
- 用GOSS解线性方程组 Dim i As Integer 循环变量 Dim j As Integer 循环变量 Dim k As Integer 循环变量 -with Goss solving linear equations Dim i As Integer Dim cycle variable j As In teger cycle variables As Integer Dim k cycle variables
线形方程组求解
- 用Gauss消元法、选列主元的Gauss消元法求线性方程组(1)的解,要求输出增广矩阵的消元变化过程。 用Gauss消元法、选列主元的Gauss消元法求线性方程组(1)的解,要求输出增广矩阵的消元变化过程 42x1+2x2+3x3=3 x1+7x2+7x3=1 -2x1+4x2+5x3=-7 算法思想:Gauss消元法是将线性方程组化为上三角形线性方程组,然后再用一个回代过程求这个上三角形线性方程组的解;选主元的Gauss消元法是在Gauss消元法上增加了选列主元
JacobiMPI
- Jacobi_MPI 基于MPI的并行算法,用Jacobi迭代法解方程组
gauss
- 并行高斯消去法解线性方程组几阶的都可以的-Parallel Gaussian elimination solution of linear equations can be a few bands of
Doolittle
- Doolittle求方程组的解,快速计算,计算物理中有的-Doolittle solution
SOR
- SOR计算方法,可以对多元方程组进行解算。-SOR method of calculation can be carried out on multi-equations solver.
Gauss_all_VCPP
- 用于解线性方程组的全主元高斯消去法C++程序-c++ Used for solving linear equations of all primary gauss elimination
rkf
- 自适应步长的Runge-Kutta-Fehlberg法解初问题常微分刚性方程组-Adaptive step size Runge-Kutta-Fehlberg method for solving initial problem of ordinary differential equations
非线性方程组求解
- 利用改进的遗传算法求解非线性方程,遗传算法得到全局最优解作为初值寻找局部最优解(Using the improved genetic algorithm to solve the nonlinear equation, the genetic algorithm gets the global optimal solution as the initial value to find the local optimal solution)
Gauss_Seidel
- 用于求解线性方程组,采用快速的迭代方法,能够有效的减少迭代次数,尽快获得收敛解。(It is used to solve linear equations and adopts a fast iterative method, which can effectively reduce the number of iterations and obtain a convergent solution as soon as possible.)