搜索资源列表
datastr
- 数据结构 array.h: 安全数组,可自动增长大小(随机访问,但扩充时效率低) linkedlist.h: 普通链表(可随机访问,但访问效率低) dclinkedlist: 双向循环链表(不可随机访问,但插入、遍历的效率都比普通链表高) hashtable.h: 哈希表(使用键值标识元素,键值一样的元素即认为相等,需重载 == 运算符并由用户定义哈希函数) binstree.h: 二叉搜索树(需重载 == 和 < 运算符) avltree.h: AVL 树(
shujujiegou__c++
- c++编的几个数据结构代码。包括AVL树、二叉搜索树、二叉树、Kruskal算法和图的邻接表表示-c addendum to the few data structure code. Including AVL tree, binary search tree, binary tree, Kruskal map algorithm and the adjoining table
Binary_Search_Tree
- c++编的几个数据结构代码。包括AVL树、二叉搜索树、二叉树、Kruskal算法和图的邻接表表示-c addendum to the few data structure code. Including AVL tree, binary search tree, binary tree, Kruskal map algorithm and the adjoining table
tudelinjiebiaobiaoshi
- c++编的几个数据结构代码。包括AVL树、二叉搜索树、二叉树、Kruskal算法和图的邻接表表示-c addendum to the few data structure code. Including AVL tree, binary search tree, binary tree, Kruskal map algorithm and the adjoining table
Kruskal_suanfa
- c++编的几个数据结构代码。包括AVL树、二叉搜索树、二叉树、Kruskal算法和图的邻接表表示-c addendum to the few data structure code. Including AVL tree, binary search tree, binary tree, Kruskal map algorithm and the adjoining table
Binary__Tree
- c++编的几个数据结构代码。包括AVL树、二叉搜索树、二叉树、Kruskal算法和图的邻接表表示-c addendum to the few data structure code. Including AVL tree, binary search tree, binary tree, Kruskal map algorithm and the adjoining table
AVL___Tree
- c++编的几个数据结构代码。包括AVL树、二叉搜索树、二叉树、Kruskal算法和图的邻接表表示-c addendum to the few data structure code. Including AVL tree, binary search tree, binary tree, Kruskal map algorithm and the adjoining table
电话本管理系统
- 提高输入容错。判断输入的对错。 时间关系,搜索功能为线性搜索,现增强如下:f_search:费氏查找法;btree:二叉树查找法;l_search:线性查找法; r_search:递归折半查找法;zcsear:杂凑碰撞查找法;o_sear:插补查找加强法; 排序是冒泡法,现增强为:heaps:累堆排序;binary:二叉树排序;xieer:谢耳排序;sinsert:插入排序;quicks:快速排序;select:选择排序法;-increase input fault tolerance. Imp
FOJ
- 向量距离,二叉搜索堆,树的先后中序,-Vector distance from the binary search heap, one after another in the sequence tree
tree
- 搜索二叉树算法,来自大学C语言教程,经典的算法。是结构体的一种有效利用。-serch tree
Ordered-binary-tree
- 搜索有序二叉树 C语言实例解析中的经典代码 简单易懂 功能强大-Ordered binary tree search
二叉搜索树的创建与遍历
- 简单描述了一个二叉搜索树的创建,并且进行先序,后序,中序遍历。(A simple descr iption of the creation of a two fork search tree, and the first order, after the order, in the order traversal.)