搜索资源列表
RandomForests_paper
- 介绍随机森林(Random Forest)最早的,最经典文献!LEO BREIMAN.Random Forests.Machine Learning, 45, 5–32, 2001-introduced random forests (Random Forest) the earliest, The most classic literature! LEO Le BREIMAN.Random Forests.Machine Jiaotong, 45, 5-32, 2001
RandomForest
- 基于决策树实现的随机森林算法,是数据挖掘中一个经典的分类算法,对初学者具有很好的学习参考意义。-Based on Decision Tree achieved random forests algorithm is a classical data mining classification algorithm, for beginners to learn with a good reference value.
RandomForest
- 基于Java语言实现的随机森林,其中主要用到了Weka包来封装-Java-based implementation of random forests, mainly used in the Weka package to package
RandomForest
- 借助weka实现的随机森林算法,值得一看,随便写的。基本实现了原理。-With random forests algorithm weka implementation, worth a visit, just write. The basic realization of the principle.
dlib-18.14.tar
- 机器学习的范畴,包括SVMs (based on libsvm), k-NN, random forests, decision trees。可以对任意的数据操作-Its focus is on supervised classification with several classifiers available: SVMs (based on libsvm), k-NN, random forests, decision trees. It also performs feature sel
src
- 机器学习算法-随机森林的java实现,可以作为入门使用-Machine learning algorithms- random forests to achieve the java can be used as entry
RandomForest
- 随机森林是由多棵树组成的分类或回归方法。主要思想来源于Bagging算法,Bagging技术思想主要是给定一弱分类器及训练集,让该学习算法训练多轮,每轮的训练集由原始训练集中有放回的随机抽取,大小一般跟原始训练集相当,这样依次训练多个弱分类器,最终的分类由这些弱分类器组合,对于分类问题一般采用多数投票法,对于回归问题一般采用简单平均法。随机森林在bagging的基础上,每个弱分类器都是决策树,决策树的生成过程中中,在属性的选择上增加了依一定概率选择属性,在这些属性中选择最佳属性及分割点,传统做法