搜索资源列表
Advanced_Statistic
- J语言实现的各种高级统计功能,比如线性回归,聚类分析等。可用在实验室中各种数据仓库的数据挖掘之用。-J language of the High statistical functions, such as linear regression, clustering analysis. Available in the laboratory data warehouse data mining purposes.
Clustering
- 数据挖掘算法。K-Means聚类数据挖掘算法。该算法是用Java语言编写的。
clusterers
- 数据挖掘clusterers算法,用JAVA实现的聚类算法。
Aprior_java.RAR
- Aprior数据挖掘中聚类算法的一种,该源码通过java实现该算法。快来下啊!
JAVA实现文本聚类,用到TF/IDF权重
- JAVA实现文本聚类,用到TF/IDF权重,用余弦夹角计算文本相似度,用k-means进行数据聚类等数学和统计 知识。,JAVA realization of text clustering, using TF/IDF weight, calculated using cosine angle between the text of similarity, using k-means clustering for data such as mathematical and statistical
java-cluster.zip
- 用java语言实现文本聚类,包括聚类前的数据预处理:分词、降维、建立向量空间模型等,Implementation using java language text clustering, including clustering of the data pre-processing before: segmentation, dimensionality reduction, set up, such as Vector Space Model
KMeansJava
- 利用Java实现的K-均值算法,K-Mean 分群法是一种分割式分群方法,其主要目标是要在大量高纬的资料点中找出 具有代表性的资料点;这些资料点可以称为群中心,代表点;然后再根据这些群中心,进行后续的处理,可用于数据挖掘中的聚类分析-Java implementation using K-means algorithm, K-Mean grouping method is a fragmented grouping method, whose main goal is to a large nu
TestK
- java的k-means聚类算法实现,使用了2维的聚类算法,在数据统计以及图像识别方面不错-java of the k-means clustering algorithm
clustream
- Clustream是一种基于用户指定的、联机聚类查询的演变数据流聚类算法。它的聚类过程分联机和脱机两个部分。 -Clustream is based on user-specified, the evolution of online data stream clustering query clustering algorithm. It' s online and offline clustering process comprises two parts.
dbscan
- 数据挖掘,聚类分析,DBSCAN JAVA的实现, -Data mining, clustering analysis, DBSCAN JAVA realization
weka-src
- Java 编写的多种数据挖掘算法 包括聚类、分类、预处理等-Java to prepare a variety of data mining algorithms, including clustering, classification, preprocessing, etc.
bayes
- 数据挖掘聚类算法:bayes源代码,使用JAVA语言实现-data mining clustering algorithm
SimpleKMeans
- 数据挖掘聚类算法:SimpleKMeans源代码,采用JAVA语言编程实现-Clustering Algorithm of Data Mining: SimpleKMeans source code, the use of JAVA programming language
weka
- 经典的数据挖掘算法的源代码,包括分类、聚类、关联规则等,非常有用。-Classical data mining algorithms of source code, including classification, clustering, association rules and so on, very useful.
ex-10
- 数据挖掘算法。K-Means聚类数据挖掘算法。该算法是用Java语言编写的-K-Means Cluster
weka-src
- 开发环境:eclipse WEKA是一个数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。 -Development environment: eclipse WEKA is a data mining work platform, a collection of a lot to take on the task of data mining machine learning algorithms,
k-means_Program
- k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。 -k-means algorithm to accept input k then n-k of data objects into a cluster in order to make the cluster available to meet: t
gainianshucode
- 这是用Java实现的概念树聚类的代码,是数据挖掘中的重要部分。-This is the realization of the concept of using Java code tree clustering is an important part of data mining.
SimpleKMeans
- kmeans.java 代码。用于数据挖掘中的聚类算法。这个事weka中开源的代码。-failed to translate
java
- 解决数据聚类分离问题,用java能很好的解决这一问题,提高效率 对大家有帮助-Solve the problem of separation of data clustering, java can be used to solve this problem well, to improve efficiency to help everyone