搜索资源列表
HumanMotionDetection
- 从人流统计的实际工程出发,实现了基于计算机视觉的人体运动检测及跟踪系统,采用“差影法”滤掉静止帧,使用自适应的一阶递归滤波及帧差法提取运动区域,并通过数学形态滤波的开运算和闭运算改善运动区域提取效果。实验结果证明本运动跟踪方案处理简单高效 、抗噪能力强,可以完成复杂背景下运动目标的实时性检测与跟踪。
基于MATLAB的带噪图像的中值滤波
- 图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵。本文将纯净的图像加入椒盐噪声,然后采用中值滤波的方法对其进行去噪。中值滤波是一种常用的非线性信号处理技术,在图像处理中,它对滤除脉冲干扰噪声最为有效。文章阐述了中值滤波的原理、算法以及在图像处理中的应用。MATLAB是一种高效的工程计算语言,在数据处理、图像处理、神经网络、小波分析等方面都有广泛的应用。
自适应加权中值滤波算法
- 提出了一种基于相似度函数的自适应加权中值滤波算法。该方法首先通过噪声检测确定图像中的噪声点,然后 根据窗口内噪声点的个数自适应地调整滤波窗口的尺寸,并根据相似度大小,巧妙地将滤波窗口内各个像素点自适应分 组并赋予相应的权重,最后对检测出的噪声点进行加权中值滤波。计算机模拟实验结果表明:该算法既能有效地滤除噪 声,又能较好地保护图像细节,比标准中值滤波具有更优良的滤波性能。-A similarity function based on adaptive weighted medi
zy1
- 摘要 该文主要考虑利用图像噪声再生技术来提取图像细节 其思想是利用被滤除的噪声信号进行回收再利用 通过对噪声信号和初步去噪信号进行小波变换 比较它们的小波系数 当噪声信号的小波系数达到一定的阈值时 将噪声信号的小波系数保留叠加至初步去噪信号的小波系数 然后利用传统的软阈值去噪的方法来进行图像的去噪 从而达到既能够去除噪声 又能保留图像细节的目的 实验证明 该方法较传统的方法在去噪和细节保持上有改进-Abstract In this paper, consider using images to
denoising
- 信号处理技术在局部放电去噪中的应用。摘 要:抑制干扰是信号处理的关键技术,滤除窄带干扰则是其中的重要内容。文中介绍了运用经典FFT频域阈值算法抑制局部放电周期窄带干扰的方法,并在此基础上提出了一种优化算法。通过对仿真数据的处理效果比较,验证了该优化算法的有效性。-Signal Processing Technology in partial discharge denoising
xiaobo
- 这个程序是小波去噪的程序,可以滤除高频噪声,重构原信号-This program is a wavelet denoising procedure, you can filter out high frequency noise, and reconstruct the original signal
Noise-reduction-algorithm
- 对设备进行故障诊断的主要方法就是测量故障 设备的振动或噪声, 并对其进行分析, 从而找出故障原因。然而振动或噪声信号中除了对分析故障有用的信息外, 还有大量的噪声成分。只有有效地滤除噪声, 才能获得有用的信息, 从而得到可靠的分析结论。传统的滤噪方法是将被噪声污染的信号通过一个滤波器, 滤掉噪声频率成分。但对于短时瞬态信号、非平稳信号、含宽带噪声的信号, 采用传统处理方法有着明显的局限性。小波变换为信号去噪提供了一种有效的方法, 小波阈值去噪具有传统方法不可比拟的优越性。但是小波分解的频域重
DSP
- MATLAB软件平台下,利用函数wavread对语音信号进行采样,记住采样频率和采样点数; 2)画出语音信号的时域波形,对采样后的语音进行fft变换,得到信号的频谱特性;对语音信号分别加入正弦噪声和白噪声,画出加噪信号的时域波形和频谱图; 3)根据对加噪语音信号谱分析结果,确定滤除噪声滤波器的技术指标,设计合适的数字滤波器,并画出滤波器的频域响应; 4)用所设计的滤波器对加噪的信号进行滤波,在同一个窗口画出滤波前后信号的时域图和频谱图,对滤波前后的信号进行对比,分析信号变化; -
Image-filter.tar
- 提出了一种基于改进 BP 神经网络和粒子群优化算法( PSO) 的图像滤波方法 。该方法利用双曲正切形式 的误差函数代替 BP 神经网络传统的最小均方误差函数( LMS),并将改进后的 BP 神经网络利用 PSO 算法优 化,用来减小图像噪声对神经网络精度的影响以及避免神经网络陷入局部极小值点,从而提高神经网络去噪能 力。实验结果表明,与传统滤波方法相比,该方法不仅能有效地滤除图像中的高斯噪声而且能很好地保护图像 细节 。- U63D0 u51FA u4E86 u4E00