搜索资源列表
求解药代动力学参数的自适应混合粒子群算法
- 摘要:针对传统方法具有初始值敏感和进化算法无法确定搜索范围等缺陷,将Nelder-Mead 单纯形与粒子群算法相结合,提出 了一种基于Nelder-Mead单纯形与粒子群算法的具有时变加速因子的自适应混合粒子群算法。将该混合算法用于血管外给药二 室模型参数优化的实验之中。仿真实验结果表明,算法计算精度高而且鲁棒性强,是一种新颖的解决药代动力学参数优化的较 好方法。
362465378
- 工程应用中的多峰寻优问题要求搜索目标函数的多个极值点,现有的多峰优化方法难以直接利用应用 问题的先验知识引导算法过程,多峰寻优效率较低。基于粒子群优化算法设计一种面向应用的多峰寻优算法, 能有效利用易于获得的先验参数,如峰间分辨率、峰位置精度、峰值个数等实现快速多峰搜索。该算法保持了粒 子群算法的简单性并改善了搜索多样性,使其可控地收敛到多个峰值上。将该算法与几种典型的多峰寻优方法 进行了对比测试和分析,结果表明,对复杂多峰函数,该算法能以最快的收敛速度实现多峰搜索-Mu
23445455
- 针对小生境粒子群优化技术中小生境半径等参数选取问题,提出了一种新颖的小生境方法,无须小生 境半径等任何参数。通过监视粒子正切函数值的变化,判断各个粒子是否属于同一座山峰,使其追踪所在山峰 的最优粒子飞行,进而搜索到每一座山峰极值。算法实现简单,不仅克服了小生境使用中需要参数的弊端,而且 解决了粒子群算法只能找到一个解的不足。最后通过对多峰值函数的仿真实验,验证了算法可以准确地找到所 有山峰-Proposed a novel niche for niche particle
466676
- 针对小生境粒子群优化技术中小生境半径等参数选取问题,提出了一种新颖的小生境方法,无须小生 境半径等任何参数。通过监视粒子正切函数值的变化,判断各个粒子是否属于同一座山峰,使其追踪所在山峰 的最优粒子飞行,进而搜索到每一座山峰极值。算法实现简单,不仅克服了小生境使用中需要参数的弊端,而且 解决了粒子群算法只能找到一个解的不足。最后通过对多峰值函数的仿真实验,验证了算法可以准确地找到所 有山峰-Proposed a novel niche for niche particle
5346363636
- :针对粒子群算法进行多极点函数优化时 存在的局部极小点和搜寻效率低的问题,引入了小 生境的思想到粒子群算法中,以粒子的最好位置为 中心,粒子的最好的个体解对应的适应值为半径建 立圆形小生境。stretching 技术,其次对子群体采用解散策略,即当在子群体中找到一个极值点后把子群体解散回归主群体,最 后设置子群体创建时的半径阈值,避免子群体半径过大。该算法解决了标准的NichePS0算法在处理 多峰函数时,极值点的个数依赖于子群体个数及极值点容易出现重复、遗漏
linxin
- 针对量子粒子群优化算法在处理高维复杂函数时存在的收敛速度慢、易陷入局部极小等问题,提出了混沌量子粒子群优化算法。-Abstract:Using quantum-behaved particle swarmoptimization (QPSO) to handle complex functions with high-dimension has the problems of low convergence speed and sensitivity to local convergence
BPCH1
- 神经网络的集体自动控制器代码集合,比如与PID、cmac、粒子群算法等集合-Collective neural network controller code set, such as the collection of PID, CMAC, particle swarm algorithm
The-new-meta-heuristic-algorithm-bat
- 摘要:新型元启发式算法例如粒子群算法,萤火虫算法,和声搜索算法已经成为现今复杂的优化问题的有效解决方法。该文基于蝙 蝠的回声定位行为提出了一种新型的元启发式算法———蝙蝠算法,同时也将现有的一些算法的优点引入到该算法中。 改文对该算 法进行了详细的公式化表述并对其执行流程的作出了说明,并且将该算法与遗传算法、粒子群优化算法等算法进行了比较。仿真结 果表明,蝙蝠算法明显优于其他算法,并对进一步的研究作出了展望。-Summary: The new meta-heuristic algor
yiqun
- 有关蚁群算法的44篇优秀论文,包括蚁群算法、量子蚁群算法、蚁群算法与粒子群算法的混合算法等。-44 excellent papers about ant colony algorithm, ant colony algorithm, quantum ant colony algorithm, ant colony algorithm and the mixed algorithm of particle swarm optimization (pso) algorithm.
PSO-matlab
- 粒子群算法源程序,是近年来发展起来的一种新的进化算法。有实现容易、精度高、收敛快等优点。是一种并行算法。-Particle swarm algorithm source code, is a new evolutionary algorithm developed in recent years. There are easy to implement, high precision, fast convergence and so on. Is a kind of parallel algor
svm_v251
- 遗传算法和粒子群算法优化的近似模型,图象,理论与对比等说明。-Approximate model of genetic algorithm and particle swarm optimization, the image, and contrast theory and explanation.
Intelligent-algorithm
- 智能算法,包括粒子群,改进粒子群,改进遗传算法等,可用于预测等领域!-Intelligent algorithms, including PSO, improved particle swarm, improved genetic algorithm can be used to predict other fields!
粒子群优化算法
- 粒子群优化(PSO)是一种进化计算技术(进化计算)。 捕食鸟行为的研究。粒子群算法(PSO)的基本思想是通过群体中个体之间的协作和信息共享找到最优解。 粒子群优化算法的优点是它简单且易于实现,没有多个参数。目前,它已广泛应用于函数优化、神经网络训练、模糊系统控制等遗传算法中。(The particle swarm optimization (PSO:Particle swarm optimization) is an evolutionary computing technology (Ev
智能算法总结
- 该文档对智能算法,包括遗传算法、粒子群算法、禁忌搜索算法和人工神经网络算法等的概念和性能进行了基本总结(This paper summarizes the concept and performance of intelligent algorithms, including genetic algorithm, particle swarm optimization algorithm, tabu search algorithm and artificial neural network a