搜索资源列表
vq
- 说话人识别是语音识别的一种特殊方式,其目的不是识别语音内容,而是识别说话人是谁,即从语音信号中提取个人特征。采用矢量量化(VQ)可避免困难的语音分段问题和时间归整问题,且作为一种数据压缩手段可大大减少系统所需的数据存储量。本文提出了识别特征选取采用复倒谱特征参数和对应用VQ的说话人识别系统改进的一种方法。当用于训练的数据量较小时,复倒谱特征可以得到比较稳定的识别性能。VQ的改进方法避免了说话人识别系统的训练时间与使用时间相差过长从而导致系统的性能明显下降以及若利用自相关函数带来的大量运算。-Sp
application_of_special_person_on_ASR_for_the_contr
- 常用的说话人识别方法有模板匹配法、统计建模法、联接主义法(即人工神经网络实现)。考虑到数据量、实时性以及识别率的问题,采用基于矢量量化和隐马尔可夫模型(HMM)相结合的方法。 说话人识别的系统主要由语音特征矢量提取单元(前端处理)、训练单元、识别单元和后处理单元组成,
test
- MySQL数据库 其他数据库 汇编语言 SCSI/ASPI 编译器/解释器 磁盘工具 语音合成与识别 编辑器/阅读器 杀毒 中文信息处理 FlashMX源码 并行计算 书籍源码 Delphi控件源码 操作系统开发 中间件编程 MacOS编程 + 电子书籍 VC书籍 Java书籍 Delphi/CppBuilder
ARAC
- 语音识别中的语音信号特征提取和选择是关系到语音识别模型性能的一个重要问题。音信号的特征提取是解决时域信号的数字表问题,特征选择则是在多个特征中选择有的特征为后继的模式划分部分提供数据。-Speech recognition in speech signal feature extraction and selection in relation to the performance of speech recognition model of an important issue. Audio
safjfd
- 首先分析了典型说话人识别系统的各关键技术,详细分析了矢量量化技术在 说话人识别中的应用,研究了码本训练算法以及说话人判别算法,对算法中各参 数值的选取进行了讨论 其次根据系统的需求建立一个小的语音库,录制语音信 号,并对采集的语音信号进行预处理,检测语音信号的起始端点 在MATLAB 环境下仿真说话人识别系统,验证系统设计方案的可行性:特征提取阶段,提取 语音信号的12阶美尔倒谱系数以及各阶倒谱系数对应的1阶差分倒谱系数,在 训练阶段,采用分裂法和GLA算法相结合的矢量量
TCS230-Color-Sensor-for-Ship
- 该系统采用三块TCS230颜色传感器,监测轮船经过后海水的颜色变化的情况,数据采用就地处理,并运用改进型BP神经网络算法进行污染模式训练和模式识别。通过nRF401无线数字收发器,把污染识别的结果发送回监 视器,再通过字符和语音对识别结果进行报告。把轮船污染数据采集器安装在轮船尾部两侧进行实时监测,结果表明,监测速快,精确度高。-The system uses three TCS230 color sensor to monitor the ship through the water
activity-recognition--based-on-hmm
- 一种HMM可以呈现为最简单的动态贝叶斯网络。隐马尔可夫模型背后的数学是由LEBaum和他的同事开发的。它与早期由RuslanL.Stratonovich提出的最优非线性滤波问题息息相关,他是第一个提出前后过程这个概念的。 在简单的马尔可夫模型(如马尔可夫链),所述状态是直接可见的观察者,因此状态转移概率是唯一的参数。在隐马尔可夫模型中,状态是不直接可见的,但输出依赖于该状态下,是可见的。每个状态通过可能的输出记号有了可能的概率分布。因此,通过一个HMM产生标记序列提供了有关状态的一些序
fw802
- 数据模型归一化,模态振动,完整的基于HMM的语音识别系统,粒子图像分割及匹配均为自行编制的子例程。- Normalized data model, modal vibration, Complete HMM-based speech recognition system, Particle image segmentation and matching subroutines themselves are prepared.
深度卷积神经网络
- 作为类脑计算领域的一个重要研究成果,深度卷积神经网络已经广泛应用到计算机视觉、自然语言处理、信息检索、语音识别、语义理解等多个领域,在工业界和学术界掀起了神经网络研究的浪潮,促进了人工智能的发展。卷积神经网络直接以原始数据作为输入,从大量训练数据中自动学习特征的表示。(As the important research achievement, deep convolutional neural networks have been widely applied to various fiel
SVAC标准介绍
- 支持高精度视频数据,在高动态范围场景提供更多图像细节 支持先进编码工具,在获得更好图像质量的同时获得更高编码效率 支持感兴趣区域(ROI)变质量编码,在网络带宽或存储空间有限的情况下,提供更符 合监控需要的高质量视频编码 支持可伸缩视频编码(SVC),满足不同传输网络带宽和数据存储环境的需求 u 支持代数码书激励线性预测(ACELP)和变换音频编码(TAC)切换的双核音频编码, 保证对语音和环境(背景)声音均有较好的编码效果 支持声音识别特征参数编码,避免编码失真对语音识别和声
关于人工智能在数据质量管理中的应用
- 说实在的,这个概念有些过于高大上,从大的方面包括、、强化学习等等,而深度学习又包括图像识别、语音识别、自然语言处理、预测分析;机器学习则包括监督学习、无监督学习、半监督学习,监督学习又细分为回归、分类、决策树等等。理论上人工智能什么都能做,什么都能迎合的上。