搜索资源列表
-
1下载:
Matching Pursuit方法,经典的稀疏表示方法,可以用人脸识别和图像分类,图像去噪,现在非常流行。-Matching Pursuit method, sparse representation of the classic, you can use face recognition and image classification, image denoising, now very popular.
-
-
0下载:
Locally Adaptive Sparse Representation for Detection, Classification, and Recognition. Lectuures given by Prof Trac Tran from john Hopkins university
-
-
1下载:
主要用于解决模式识别中稀疏表示人脸识别核心问题L1范数源代码,程序采用同伦算法设计的,在目前稀疏表示多种算法中,同伦算法是性能公认最好的.-Mainly used to solve the sparse representation of face recognition pattern recognition in the core of L1 norm source code, the program designed using the homotopy algorithm, sparse
-
-
1下载:
针对稀疏表示识别方法需要大量样本训练过完备字典且特征冗余度较高的问题,提出了结合过完备字典学习与PCA降维的小样本语音情感识别算法.该方法首先用PCA降维方法将特征降维,再将处理后的特征用于过完备字典训练与稀疏表示识别方法,从而给出了语音情感特征的稀疏表示方法,并确定了新算法的具体步骤.为验证其有效性,在同等特征维数下,将方法与BP, SVM进行比较,并对比、分析语音情感特征稀疏化前后对语音情感识别率、时间效率以及空间效率的影响.试验结果表明,所提出方法的识别率比SVM与BP高 与采用稀疏化前的
-
-
0下载:
2篇基于稀疏表示具有鲁棒性人脸识别算法介绍,pdf格式-2 piece based on sparse representation robust face recognition algorithm is introduced, in PDF format
-
-
0下载:
基于Gabor特征和字典学习的高斯混合稀疏表示图像识别-Image recognition based on Gabor features and dictionary learning of Gauss hybrid sparse representation
-
-
0下载:
This project describes the problem of facial expression recognition in the field of computer vision. Firstly, the psychological background of the problem is presented. Then, the idea of facial expression recognition system (FERS) is outlined and the
-
-
1下载:
核稀疏用于字典学习和稀疏表示,可用于纹理分类等模式识别问题。-Nuclear sparse dictionary for learning and sparse representation can be used for texture classification pattern recognition problem.
-
-
0下载:
joint sparse representation
(JSR)方法用于车内语音增强的特征降噪算法-address reducing the mismatch between training
and testing conditions for hands-free in-car speech recognition. It
is well known that the distortions caused by background noise,
channel effec
-
-
0下载:
用于混响背景语音分离的结构稀疏模型(Strutured sparisty model)方法-To further tackle the ambiguity
of the reflection ratios, we propose a novel formulation of the
reverberation model and estimate the absorption coefficients
through a convex optimization exploiting
-