搜索资源列表
AnadaptiveKalmanfilterfordynamicharmonicstateestim
- Knowledge of the process noise covariance matrix is essential for the application of Kalman filtering. However, it is usually a difficult task to obtain an explicit expression of for large time varying systems. This paper looks at an adaptive
TR2005-127
- Approach based on covariance matrix Approach based on covariance matrix Approach based on covariance matrix Approach based on covariance matrix-Approach based on covariance matrix Approach based on covariance matrix Approach based on covariance matri
MUSIC_algorithm
- MUSIC 算法是利用接收数据的协方差矩阵(Rx)分离出信号子空间和噪声子空间,利用信号方向向量与噪声子空间的正交性来构成空间扫描谱,进行全域搜索谱峰,从而实现信号的参数估计。-MUSIC algorithm is used to receive data covariance matrix (Rx) to isolate the signal subspace and noise subspace, using the signal direction vector and noise su
A-NOVEL-SKIN-YCBCR-COLOR-SPACE
- This paper presents a new human skin color model in YCbCr color space and its application to human face detection. Skin colors are modeled by a set of three Gaussian clusters, each of which is characterized by a centroid and a covariance matr
trackfusion
- 利用误差协方差阵的迹最小准则建立了多传感器异步融合模型-Error covariance matrix using the minimum criteria for the establishment of a multi-track asynchronous sensor fusion model
sdarticle_2
- Shipboard/landbased radar clutter/jamming rejection using a structured covariance matrix ( journal paper )
em_covariances
- Using SAS/IML : This code uses the EM algorithm to estimate the maximum likelihood (ML) covariance matrix and mean vector in the presence of missing data. This implementation of the EM algorithm or any similar ML approach assumes that the data are
signal-parameter-estimation
- 本文分析了多级维纳滤波器的特性,在加性噪声和二维天线阵列如均匀圆阵、均匀面阵、十字阵等条件和背景下,对信源个数和信源参数估计问题进行了研究,提出了基于多级维纳滤波器前向分解特性的快速参数估计方法,同时提出了基于多级维纳滤波器的二维ESPRIT参数估计方法,该类方法无需协方差矩阵的估计运算及分解运算,计算复杂度较低。另外,还提出了对信源个数的估计算法。-This paper analyzes the characteristics of multistage Wiener filter, in t
fast-subspace-algorithm
- 为了对空间辐射源进行精确定位" 建立了基于任意阵列对多目标源进行二维DOA估计的数学模型。将 MUSIC算法推广到三维空间阵列可以对辐射源进行二维高精度测向,但由于其需要估计接收数据的协方差矩阵和进行特征分解, 因而其计算量较大。利用多级维纳滤波器的前向递推获得信号子空间和噪声子空间,不需要估计协方差矩阵和对其进行特征分解,从而降低了MUSIC算法的计算量。将文中的方法应用于任意阵列的二维DOA估计中进行计算机仿真和实际侧向系统性能验证,实验结果均表明该方法达到了MUSIC算法的性能,但与常规M
xietongdingwei
- 协同定位是多平台编队中的关键问题之一 是实现无人机~ 舰艇编队等定位控制的基础G 从信息融 合的角度研究了编队协同中的导航定位问题 提出了一种新的协同定位算法G 推导了二维情况下 基于最近邻准 则确定伪测量和相伴误差协方差矩阵的模型G 仿真分析表明 该算法可以稳定地完成己平台运动要素的估计-Co-location is one of the key issues in the formation of multi-platform UAV ~ vessel formation pos
eigface
- Eigenfaces are a set of eigenvectors used in the computer vision problem of human face recognition. The approach of using eigenfaces for recognition was developed by Sirovich and Kirby (1987) and used by Matthew Turk and Alex Pentland in face classif
N_sensors-12-13212-v2
- This paper presents an adaptive information fusion method to improve the accuracy and reliability of the altitude measurement information for small unmanned aerial rotorcraft during the landing process. Focusing on the low measurement performance
fx
- 总体主成分,总体主成分的计算,总体成分的性质,主成分的协方差矩阵及总方差。 -Overall main component, the overall calculation of the main component, the nature of the overall component, the main component of the covariance matrix and the total variance.
Beamform-ing-Algorithm
- 提出一种基于直接数据域最小二乘方法的自适应多波束形成算法,包括前向计算、后向计算和前- 后向计算。利用天线阵元输出复电压的单快拍数据构建矩阵方程,采用共轭梯度法求解得到阵列的自适应权值向 量,从而在所有期望信号方向形成接收波束,同时在各干扰方向形成深零陷,使信干噪比显著提高。由于只需对单 快拍数据进行处理,并且避免了样本协方差矩阵的构造及矩阵求逆运算,故计算复杂度较传统算法低。-An adap tive multip le beamforming algorithm based on
PCA
- 比较深入的分析了PCA人脸识别方法的原理,并对PCA在应用过程中遇到的特征值选择和距离准则问题进行了研究,实现了基于PCA算法的人脸识别。 -First, the thesis investigates principle component analysis (PCA) approachdeeply, and then the choice of feature vector of sample s covariance matrix anddistance measure criteri
An-Empirical-Bayesian-Framework
- 一种基于贝叶斯框架的线性分类。使用神经生理学信息和实验信息构建协方差矩阵。-A linear classification based on Bayesian framework. Covariance matrix is constructed using information and experimental neurophysiology information.
[5]-Sensitive-White-Space-Detection-with-Spectral
- This paper proposes a novel, highly effective spectrum sensing algorithm for cognitive radio and white space applications. The proposed spectral covariance sensing (SCS) algorithm exploits the different statistical correlations of the received
Robust-Beamforming-via-Semidefinite
- 现有的向量加权稳健波束形成方法只有在指向误差较小的情况下才能有效估计目标的信号功率;矩阵加权波束形成方法在指向误差较大时,虽然可以估计目标的信号功率,但是它的系统实现复杂度与向量加权稳健波束形 成方法相比较大。针对以上问题,该文提出基于半正定秩松弛(SDR)方法的稳健波束形成,该方法优化模型中的目标函数与Capon 算法的目标函数相同,优化变量为加权向量的协方差矩阵,并约束方向图的主瓣幅度波动范围、旁瓣电平,协方差矩阵的秩为1。-The existing vector weighted ro