搜索资源列表
sift5
- :研究了一种多目标识别算法,该算法用SUSAN角点形成SIFT特征点,采用阶梯图像金字塔结构实现尺度不变,为所有匹配点建立统一的超定线性方程组并对该方程组系数矩阵进行简 化使其维数降低一半,得到增广矩阵.对增广矩阵进行列变换,依据坐标转换的特性可从中提取多目标的稳定正常点,实现了快速分离多目标的匹配点. -: Study of a multi-target recognition algorithm using SUSAN corner formed SIFT feature point
sift-based-on-edge-corner
- SIFT 由特征提取,特征描述符描述和特征匹配 3 部分构成,该算子特征提取数目庞大,建立特征描述符运算 量高,导致算法效率低。提出了一种 SEC( SIFT-Edge-Corner) 算法,在图像尺度空间提取角点代替 SIFT 特征点,并根 据角点是边缘曲率极值理论,预先采用 Canny 算子得到高斯边缘图像金字塔,再提取角点并进行尺度选择。实验结 果表明: 该算法在保障高准确率的前提下大幅度提高特征提取效率-By the SIFT feature extraction, fea
sift
- sift算法,高斯金字塔,DOG算子 讲义教程-SIFT algorithm, Gauss Pyramid, DOG operator lecture tutorial