搜索资源列表
svm_face_recognition
- 一篇很不错的关于人脸表情识别的论文。论文提出了一种基于人脸局部特征的表情识别方法,先选取人脸重要的局部特征,对得到的局部特征进行主成分分析,然后用支持向量机( SVM)设计局部特征分类器来确定测试表情图像中局部特征,同时设计支持向量机( SVM)表情分类器,确定表情图像的所属类别。-A very good facial expression recognition on paper. This paper proposes a feature based on local expression
Based-onSVM-target-tracking
- 计算Haar小波特征,用AdBaoost提取部分有代表性的特征共三种特征选择方法与SVM相结合进行目标跟踪的算法。 -The calculated Haar wavelet features to extract some of the typical characteristics of three feature selection method combined with SVM algorithm for target tracking AdBaoost.
HOG
- 基于梯度方向直方图( H OG) 特征的行人检测是目前检测精度较高的主流方法。针对基于梯度直方图特征的 行人检测存在检测精度还有待提高、向量维数大的问题, 提出使用梯度直方图统计特征加颜色频率和肤色特征描述行 人, 选取一些分类能力较强的block 作为最后的特征, 使用线性SVM 分类。在INRIA 库上的实验证明, 该方法能有效地 提高检测精度。-H istog r am o f or iented g radient( H OG) based on pedestr ian de
PCA
- 针对稀疏表示识别方法需要大量样本训练过完备字典且特征冗余度较高的问题,提出了结合过完备字典学习与PCA降维的小样本语音情感识别算法.该方法首先用PCA降维方法将特征降维,再将处理后的特征用于过完备字典训练与稀疏表示识别方法,从而给出了语音情感特征的稀疏表示方法,并确定了新算法的具体步骤.为验证其有效性,在同等特征维数下,将方法与BP, SVM进行比较,并对比、分析语音情感特征稀疏化前后对语音情感识别率、时间效率以及空间效率的影响.试验结果表明,所提出方法的识别率比SVM与BP高 与采用稀疏化前的
Automated Classi
- Classification of protein crystal images using svm wavelets and BloBWorld Texture features.
SVM-handwritten-digits-recognitio
- 介绍了在提取穿越次数特征、粗网格特征以及密度特征提取的基础上应用SVM进行手写体阿拉伯数字识别的方法。-Introduced the extraction across a number of features, coarse grid and density feature extraction on the basis of the application of SVM method for handwritten digits recognition.
Libsvm-FarutoUltimate
- 介绍libsvm-farutoUltimate版本,对原有libsvm工具箱新增功能,如SVM中参数优化、数据归一化和GUI可视化都有详细讲解。-It introduces the version of libsvm-farutoUltimate,and analyzes in detail the new features of the original libsvm toolbox such as SVM parameters optimization, data normalization
Action-Detection
- This paper advances prior work by proposing a joint learning framework to simultaneously identify the spatial and temporal extents of the action of interest in training videos. To get pixel-level localization results, our method uses dense traj