搜索资源列表
-
0下载:
提出了一种复杂背景下的多车牌图像分割和识别方法,首先采用统计和特征匹配相结合的方法进行背景提取,将可能存在车辆的区域提取出来;然后分别对可能的车辆区域进行局部边缘检测,并使用车牌的先验知识确定车牌的位置和单个字符分割,包括车牌倾斜时的字符分割;最后使用PCA和神经网络相结合的方法精确识别车牌。-Proposed a multi-plate image segmentation and recognition method under a complex background, the first
-
-
0下载:
为实现合格和缺陷板栗的分级, 研究了 1 种基于 BP 神经网络与板栗图像特征的板栗分级方法。 试验以罗田板
栗为研究对象, 提取的颜色及纹理等 8 个特征值, 通过主成分分析提取相应的主成分得分向量构成模式识别的输入。 利
用 BP 神经网络方法建立了板栗分级模型。 试验结果表明, 在图像信息主成分因子数为 3, 中间层节点数为 12 时, 建立
的模型最佳, 模型训练时的回判率为 100 , 预测时识别率达到了 91 .67 。 研究结果表明基于机器视觉技术的针对缺陷
板栗分
-
-
0下载:
本文档包含了对视频分类的方法论文,先提取视频中音频信息和图像信息,然后进行拼接并使用PCA进行降维处理,最后使用高斯联合模型进行学习和分类-This document contains papers on the video classification method, first extract the video audio information and image information, and then stitching using PCA dimension reduction,
-