搜索资源列表
advanced_signal_processing
- 现代数字喜好处理的MATLAB程序代码,包含随机过程分析,各种功率谱估计(欧拉方程法、协方差算法、burg算法、修正协方差算法、等等),维纳滤波器的设计、自适应滤波器的设计。 note:里面包含一些很实际的算法设计,比如说:没有发送序列的自适应噪声抵消技术,etc .还包含了详细的设计报告!-Preferences of modern digital processing MATLAB code, including the random process analysis, a variety
vvvvv
- 图像在获取、传愉和存储过程中, 由于受多种原因如模糊、失真、噪声等的影响, 会造成图像质的下降。维纳滤波是一 种常见的图像复原方法, 该方法的思想是使复原的图像与原图像的均方误差最小原则来复原图像。但是该法其有一定的限 制性, 本文在分析维纳滤波复原图像的基础上, 针对维纳滤波复原过程中产生的振铃效应, 提出了基于维纳滤波图像复原的 改进算法。该葬法通过分析图像的边界条件, 来用对图像边界进行处理的方法, 将图像在边界处对称化。实脸结果表明, 该 方法有效地降低了维纳滤波图像复原
signal-parameter-estimation
- 本文分析了多级维纳滤波器的特性,在加性噪声和二维天线阵列如均匀圆阵、均匀面阵、十字阵等条件和背景下,对信源个数和信源参数估计问题进行了研究,提出了基于多级维纳滤波器前向分解特性的快速参数估计方法,同时提出了基于多级维纳滤波器的二维ESPRIT参数估计方法,该类方法无需协方差矩阵的估计运算及分解运算,计算复杂度较低。另外,还提出了对信源个数的估计算法。-This paper analyzes the characteristics of multistage Wiener filter, in t
fast-subspace-algorithm
- 为了对空间辐射源进行精确定位" 建立了基于任意阵列对多目标源进行二维DOA估计的数学模型。将 MUSIC算法推广到三维空间阵列可以对辐射源进行二维高精度测向,但由于其需要估计接收数据的协方差矩阵和进行特征分解, 因而其计算量较大。利用多级维纳滤波器的前向递推获得信号子空间和噪声子空间,不需要估计协方差矩阵和对其进行特征分解,从而降低了MUSIC算法的计算量。将文中的方法应用于任意阵列的二维DOA估计中进行计算机仿真和实际侧向系统性能验证,实验结果均表明该方法达到了MUSIC算法的性能,但与常规M
wiener
- 这是一个利用维纳滤波实现语音增强的matlab程序.在输入语音信噪比不是很低的情况下,效果不错.-This is a use of Wiener filtering speech enhancement matlab program, good results in a low signal-to-noise ratio of the input speech is not the case.
weina
- 维纳滤波器的设计解决了滤出低频噪声的技术难题,为后续工作提供保障-Wiener filter design to solve the technical problems, filter out low-frequency noise to provide protection for the follow-up work
Noise-Reduction-
- 采用维纳滤波实现降噪的详细描述,包含单个话筒与多个话筒两种情形-Wiener filtering noise using a detailed descr iption of a single microphone and a plurality of microphones including two cases
Wiener-Filtering-for-Speech-Enhancement-in-Modula
- Normally speech signals are contaminated with noise and interference that reduces the intelligibility of speech during communication. In order to make speech signals eective and useful, they need to be enhanced from the noisy speech signal. In s
8-optimal_in_FRFTdomains
- time-invariant degradation models and stationary signals and noise, the classical Fourier domain Wiener filter, which can be implemented in O(N logN) time, gives the minimum mean-square-error estimate of the original undistorted signal. For t
WF
- Wiener filtering algorithm(WF) for speech enhancement set parameter values smoothing factor in noise spectrum update smoothing factor in priori update
Wiener-filter-demand-d-(n)
- 已知d(n)=0.8d(n-1)+w(n),w(n)为高斯白噪声,方差为0.36,x(n)=d(n)+v(n),v(n)为方差为1的白噪声-Known d (n) = 0.8d (n-1)+ w (n), w (n) is white Gaussian noise with variance 0.36, x (n) = d (n)+ v (n), v ( n) is the variance of white noise 1
Wiener-filter-for-attenuation-of-noise-Mains-on-S
- Wiener filter for attenuation of noise Mains on Sinal Electrocardiography
WienerNoiseReduction
- Wiener Noise Suppressor with TSNR & HRNR algorithms
wiener
- 设计一个FIR维纳滤波器实现对随机噪声的滤波-Design a FIR wiener filter for filtering random noise