搜索资源列表
神经网络极速学习方法研究
- 单隐藏层前馈神经网络(Single-hidden Layer Feedforward Neural Network, SLFN)已经在模式识别、自动控制及数据挖掘等领域取得了广泛的应用,但传统学习方法的速度远远不能满足实际的需要,成为制约其发展的主要瓶颈。产生这种情况的两个主要原因是:(1)传统的误差反向传播方法(back propagation,BP)主要基于梯度下降的思想,需要多次迭代;(2)网络的所有参数都需要在训练过程中迭代确定。因此算法的计算量和搜索空间很大。针对以上问题,借鉴ELM的
粗糙集
- 采用某股份制银行的698 家贷款企业样本, 基于粗糙集-Elman 神经网络集成构建了贷款企业五 级分类评估模型.该模型首先应用粗糙集理论约简出重要指标体系, 然后将训练样本送入Elman 神经网 络进行学习和训练, 进而对检验样本的风险等级进行判别.结果表明, 与传统的logistic 回归模型相比, 粗 糙集-神经网络系统对检验样本预测精度更高, 是一种更为有效和实用的分类方法, 为我国商业银行五 级分类管理提供一个新的方法. 关键词: 粗糙集;Elman 神经网络