搜索资源列表
emd-eliminate
- 文中基于经验模态分解,提出一种信号强干扰的消除方法-Paper based on empirical mode decomposition, a strong signal interference elimination
EMD-When-frequency-analysis
- 研究了经验模态分解与希尔伯特变换相结合的提取信号瞬时特征的EMD/HS法,并对其性能进行了分析-EMD/HS method to study the transient characteristics of the empirical mode decomposition and Hilbert transform combining the extracted signal, and its performance is analyzed
The-empirical-mode-decomposition-
- 应用经验模式分解将恒电量瞬态响应信号分解为不同时间尺度的内在模函数分量,去除其中的小时间尺度的干扰噪声分量-Empirical mode decomposition coulostatic transient response signal is decomposed into different time scales intrinsic mode function component, remove the small time scale interference noise compon
emd-intrduction
- 法国人的翻译:经验模态分解和算法,很好的说明文档-French translation: empirical mode decomposition and algorithms, good documentation
EMD-decomposition
- 了解经验模态分解(EMD)的基本原理,掌握经验模态分解(EMD)的分解方法。-understand the basic principle of empirical mode decomposition (EMD), master empirical mode decomposition (EMD) decomposition method.
emd--luntan
- 该程序可以把原始信号分解成各个固有模态函数,从而可以进行其他处理。-empirical mode decomposition
plot_hht
- HHT就是先将信号进行经验模态分解(EMD分解),然后将分解后的每个IMF分量进行Hilbert变换,得到信号的时频属性的一种时频分析方法。 -HHT is the first signal empirical mode decomposition (EMD decomposition), then each IMF component decomposition of the Hilbert transform, time-frequency frequency analysis meth
LMD
- 局部模态分解,具有良好的信号分解能力,不会产生模态混叠现象。-Local mode decomposition, has a good ability to decompose a signal, no modal aliasing.
VMD
- 本文介绍了一种自适应信号分解新方法-变分模态分解,并且针对滚动轴承早期故障识别困难这一问题,提出了基于VMD的诊断方法。-In this paper, a new adaptive signal decomposition method, variational mode decomposition, is introduced. Aiming at the problem of early fault identification of rolling bearing, a diagnosis
Parameter-optimization
- 针对滚动轴承早期故障特征提取困难的问题,提出一种基于参数优化变分模态分解的轴承早期故障诊断方法。首先利用粒子群优化算法对变分模态分解算法的最佳影响参数组合进行搜索,搜索结束后根据所得结果设定变分模态分解算法的惩罚参数和分量个数,并利用参数优化变分模态分解算法对故障信号进行处理。-Aiming at the difficult problem of early fault feature extraction of rolling bearing, an early fault diagnosis
VMD-Parameter-Estimation
- 变分模态分解在信号分解精度和噪声鲁棒性方面具有明显优势,但需预先确定模态数K,而目前K 只能靠先验知识进行预估,如果预估的K 与实际信号存在差异,会导致分解误差较大。针对以上问题,利用EMD 不需预先设定模态数的自适应分解特点,通过对EMD 分解结果的分析,进行VMD 分解模态数的估计,并通过仿真信号分析及滚动轴承故障信息提取-Variational modal decomposition has obvious advantages in signal decomposition accura