搜索资源列表
adapterSystemPaper
- 论文标题:自适应模糊系统在手写体数字识别中的应用研究 作者:张镭 作者专业:计算机软件人工智能 导师姓名:黄战 授予学位:硕士 授予单位:暨南大学 授予学位时间:19990501 论文页数:59页 文摘语种:中文文摘 分类号:TP18 TP391.4 关键词:手写体数字 自适应 模糊逻辑 神经网络 模式识别 摘要:该文针对模式识别的特点,构造了适合于模式识别问题的自适应模糊系统,对三种不同学习算法加以改进,在手写全数字识别上对分类器进行了实现,
1
- 基于视觉传感器实现道路信息的理解是目前移动机器人自主导航的重要研究方向,其中道路图象的正确分割 是提取有效路径信息的关键。该文针对复杂、干扰因素多的室外环境下传统方法难以实现道路图象正确分割的问题,提 出了一种基于’() 神经网络的道路图象分割方法。该方法通过选取道路图象的归一化色彩分量为特征向量,应用基于 ’() 学习算法的神经网络分类器进行道路与非道路识别;为解决环境噪声对神经网络输出的影响,本文设计了串行级联 式四阶形态滤波器实现对神经网络输出的分割图象的滤波处理。通过对实
BP
- BP神经网络,matlab环境下利用BP算法,采用BP神经元网络的设计方法实现分类器的设计-BP neural network BP algorithm Matlab environment, using BP neural network design method classifier design
PID-shenjingwangluo-kongzhi
- BP神经网络 作为弱分类器,反复训练,多个BP神经网络组成强分类器-The BP neural network as a weak classifier, repeated training, many of the BP neural network classifier
Neural-network-classifier
- 神经网络分类器,利用神经网络的学习能力,可以用神经网络实现任意精度的曲线,从而可以将曲线两边的不同对象区别开。-Neural network classifier, neural network learning ability can be used to achieve any degree of accuracy of the neural network curve to distinguish different objects can be opened on both sides