搜索资源列表
362465378
- 工程应用中的多峰寻优问题要求搜索目标函数的多个极值点,现有的多峰优化方法难以直接利用应用 问题的先验知识引导算法过程,多峰寻优效率较低。基于粒子群优化算法设计一种面向应用的多峰寻优算法, 能有效利用易于获得的先验参数,如峰间分辨率、峰位置精度、峰值个数等实现快速多峰搜索。该算法保持了粒 子群算法的简单性并改善了搜索多样性,使其可控地收敛到多个峰值上。将该算法与几种典型的多峰寻优方法 进行了对比测试和分析,结果表明,对复杂多峰函数,该算法能以最快的收敛速度实现多峰搜索-Mu
1234255
- 介绍了一种利用量子行为粒子群算法(QPSO)求解多峰函数优化问题的方法。为此,在 QPSO中引进一种物种形成策略,该方法根据群体微粒的相似度并行地分成子群体。每个子群体是 围绕一个群体种子而建立的。对每个子群体通过QPSO算法进行最优搜索。从而保证每个峰值都有 同等机会被找到,因此该方法具有良好的局部寻优特性。将基于物种形成的QPSO算法与粒子群算 法(PSO)对多峰优化问题的结果进行比较。对几个重要的测试函数进行仿真实验结果证明,基于物 种形成的QPSO算法可以尽
23445455
- 针对小生境粒子群优化技术中小生境半径等参数选取问题,提出了一种新颖的小生境方法,无须小生 境半径等任何参数。通过监视粒子正切函数值的变化,判断各个粒子是否属于同一座山峰,使其追踪所在山峰 的最优粒子飞行,进而搜索到每一座山峰极值。算法实现简单,不仅克服了小生境使用中需要参数的弊端,而且 解决了粒子群算法只能找到一个解的不足。最后通过对多峰值函数的仿真实验,验证了算法可以准确地找到所 有山峰-Proposed a novel niche for niche particle
466676
- 针对小生境粒子群优化技术中小生境半径等参数选取问题,提出了一种新颖的小生境方法,无须小生 境半径等任何参数。通过监视粒子正切函数值的变化,判断各个粒子是否属于同一座山峰,使其追踪所在山峰 的最优粒子飞行,进而搜索到每一座山峰极值。算法实现简单,不仅克服了小生境使用中需要参数的弊端,而且 解决了粒子群算法只能找到一个解的不足。最后通过对多峰值函数的仿真实验,验证了算法可以准确地找到所 有山峰-Proposed a novel niche for niche particle
求解矩阵特征值的改进PSO算法
- 求解矩阵特征值的改进PSO算法:为了改进粒子群算法在求解矩阵特征值时只能根据矩阵特征值范围逐一求解特征值的现状提出了一种改进的粒子群 算法改进的粒子群算法采用寻找到一个特征值后,适当改变适应值函数的策略,使搜索区域远离已寻找到的特征值,继续寻找 其他的特征值,如此反复,直到寻找到所有的特征值为止利用四个不同类型的矩阵求解特征值进行仿真,实验结果也验证了算 法的实用性和有效性
lijinj
- 提出了一种基于反向学习机制的改进量子粒子群算法,采用反向学习机制增加种群的多样性,使搜索效率有了较大的提高,有效地避免了算法早熟收敛。-An improved quantum particle swarm optimization (QPSO) based on reverse learning is presented in this paper, which adopts reverse learning to increase the diversity of the popula
chapter10
- 基于粒子群算法的多目标搜索算法 基于粒子群算法的多目标搜索算法-Multi-target search algorithm based on particle swarm optimization based particle swarm algorithm for multi-target search algorithm
UTIMATE_AOC
- Matlab针对蚁群算法(AOC)的TSP一维搜索-For ant colony algorithm Matlab (AOC) in the TSP one-dimensional search
Emergency-Scheduling-Pareto-solution
- 应急调度 粒子群算法 pareto解集 非梯度爬山搜索-Emergency Scheduling particle swarm algorithm Pareto solution set of non gradient hill-climbing search
search-strategies
- 常见的搜索策略有黄金分割法、抛物线法、、Powell法、蚁群算法等。 本人论文主要学习了下面几种算法并进行matlab程序演示。-Common search strategies have golden section method, parabolic law,, Powell method, ant colony algorithm. I learned the following thesis several algorithms and matlab program demons
yiqunlvxing
- 蚁群优化是一种元启发式的随机搜索技术,是目前解决组合优化问题最有效的工具之一.将信 息素更新和随机搜索机制的改进相结合,提出一种快速求解旅行商问题的蚁群算法-Ant colony optimization is a kind of meta heuristic random search technique, is one of the most effective tool to solve combinatorial optimization problem. The letter
Parameter-optimization
- 针对滚动轴承早期故障特征提取困难的问题,提出一种基于参数优化变分模态分解的轴承早期故障诊断方法。首先利用粒子群优化算法对变分模态分解算法的最佳影响参数组合进行搜索,搜索结束后根据所得结果设定变分模态分解算法的惩罚参数和分量个数,并利用参数优化变分模态分解算法对故障信号进行处理。-Aiming at the difficult problem of early fault feature extraction of rolling bearing, an early fault diagnosis