搜索资源列表
MGA
- 本文介绍了模糊自适应遗传算法,并对其性能进行了分析-This paper introduces the fuzzy adaptive genetic algorithm and its performance analysis
A_real-time_adaptive_PID_controller_step_motor
- 传统PID控制器通常难以满足多变量、非线性、强耦合的步进电机动态响应和精 确调速要求,结合传统PID控制和模糊控制及遗传算法(GA)整定PID参数的优点,设计基于 模糊遗传算法的实时自适应步进电动机PID控制器,充分发挥传统和智能控制策略各自的优 势。仿真结果表明,该实时自适应步进电动机PID控制器,具有很好的自适应能力和抗负载扰 动能力。在稳定性、动态速度响应诸方面均优于传统的PID控制器和模糊控制器,系统达到了 较高调速性能和控制精度。 -Traditional PI
newaga
- 该进的自适应遗传算法,有利于学习遗传算法-The advanced genetic algorithm, genetic algorithm is conducive to learning
Intelligent-controller
- PID控制算法简单、鲁棒性强,但其参数整定过程繁琐,整定时需要控制对象的精确数学模型,而且整定往往是针对某一种具体工况进行的,缺乏自学习和自适应能力。模糊神经网络则兼备了模糊逻辑和神经网络的优点,具有函数逼近功能,具有较强的自适应、自学习能力、容错能力和泛化能力。借助于遗传算法对全局性参数进行优化设计,借助于BP算法对局部性参数进行优化,将模糊神经网络和遗传算法引入PID控制参数的整定过程,构造出一种基于模糊神经网络和遗传算法的智能PID控制器-Intelligent controller ba
yichuansuanfa
- 遗传算法(Genetic Algorithm,GA)是通过对自然界中生物的遗传和优胜劣汰的进化过程进行模拟与抽象,进而形成的一种自适应全局随机优化搜索方法。遗传算法只需提供目标函数作为寻优信息,它从某一随机生成的初始群体出发,经过选择、交叉和变异等遗传操作后对个体进行适应度评价,保留适应度较强的个体遗传到子代种群中,经过多次的迭代计算求得最优个体,即问题的最优解。本程序采用遗传算法可求解微网优化运行。-Genetic Algorithm is an adaptive global by natu