搜索资源列表
26
- 阐述Hilbert变换的定义及解调原理。工程应用的结果表明, 利用Hilbert技术从复杂的 振动信号中解调故障的调制信息, 进而判断出故障齿轮的部位, 是一种可靠的故障诊断方法-On the definition of the Hilbert transform demodulation principle. The engineering application results show that the Hilbert technical failure of modulation i
27
- 齿轮发生裂纹故障时其振动信号会产生调制现象,包括幅值调制和频率(相位)调制两部分。目前调幅信号的解调分析已经比较成熟,但对于调频信号的解调方法研究还不够完善。全面系统介绍了近年来处理调频信号 中最常用的希尔伯特相位解调和循环平稳解调两种方法-Gear crack fault occurs when the vibration signal will produce modulation phenomenon, including the two parts of the modulation
21
- 本文研究了齿轮振动信号调制与解调的过程与机理。并根据希尔伯特变换理论,提出了一种早期诊断齿轮故障的新方法-In this paper, a gear vibration signal modulation and demodulation process and mechanism. Hilbert transform theory, proposed an early diagnosis of gear failure method
23
- 机械设备发生故障时, 故障特征的提取很重要。对于多通道的设备故障振动信号, 应用非平稳信号的盲源分离算法, 可以有效地提取各自独立的非平稳振动源,从而可以准确地进行机械故障诊断。针对不同时频分布的非平稳盲源分离算法, 比较了它们的分离效果。以转子的复合故障为例, 验证了该算法在故障诊断中可行性。-Machinery and equipment failure, the fault feature extraction is very important. Failure vibration si
25
- 针对风力发电机齿轮箱的故障,介绍常用的故障诊断方法,理论上分析齿轮箱故障振动 信号的特征,并用 软件仿真其振动信号 对比正常运行与发生故障时的频域信号波形,并进行了一定的分析,为风力发电机齿轮箱的故障诊断提供了参考-Wind turbine gearbox failures, to introduce fault diagnosis method theoretically analyze the characteristics of the vibration signal of a ge
Hilbert335
- 测量6205深沟球轴承的故障振动加速度信号, 对信号进行时频分析, 利用经验模态分解方法将振动信号分解成不同特征时间尺度的固有模态函数,对每个固有模态函数进行Hilbert 变换得到Hilbert 谱,通过谱分析识别轴承的故障部位和类型, 证实Hilbert 谱的有效性-Measuring 6205 deep groove ball bearing fault vibration acceleration signal, the signal frequency analysis, empiri
62
- 对重分配小波尺度谱存在着时、频分辨率不能同时达到最佳及当振动信号中存在着能量较大的噪声时会降低其时频分布可读性的缺陷,提出一种基于参数优化和奇异值分解(SVD)提高重分配尺度谱时频分布可读性的方法。首先利用Shan— non熵方法优化重分配尺度谱基函数的时间.带宽积(TBP),克服其时、频分辨率不能同时达到最佳的缺陷,再对重分配尺度谱 进行SVD降噪降低噪声干扰影响,提高时频分布的可读性。最后用该方法对仿真信号和滚动轴承故障信号进行了分析,结果表明该方法的时频聚集性更好,抗噪能力更强,能
63
- 提出一种基于小波分析和奇异谱降噪理论的新方法, 在分析滚动轴承故障特性的基础上, 将奇异谱理论的降噪方法与小波分析理论结合应用于滚动轴承故障诊断中。实例表明,这种结合后的新方法能够更有效地降低噪声,突出振动信号的故障特性, 从而提高设备故障诊断的准确率。-Proposed based on wavelet analysis and Singular Spectrum Reduction Noise Theory new methods in the analysis of rolling bea
81
- 滚动轴承是各种机电设备中的重要部件,其主要特点是其寿命的随机性较大,且它的好坏直接影响到设备的正常运行。因而掌握轴承运行的工作状态以及故障的形成和发展是目前机械故障诊断领域中研究的重要内容之一。利用轴承的随机振动信号对其工作状态进行诊断是目前最常用的方法-Rolling is a variety of mechanical and electrical equipment is an important component, its main feature is its randomness
84
- 滚动轴承故障诊断是机械故障检测中一个重要方面。使用小波包分析和包络分析相结合的方法提取轴承微弱振动信号, 克服了传统包络分析方法易丢失信号有效成分的缺点。包络信号的细化谱较好体现了轴承故障信息。-Bearing Fault Diagnosis of mechanical fault detection in an important aspect. The use of wavelet packet analysis and envelope analysis method of combini
116
- 针对柴油机振动信号的瞬时非线性特点, 提出采用柴油机振动信号的本征模函数( IMF) 分量进行特征频带识别的新方法。将柴油机振动信号经经验模态分解, 并去掉主要干扰因素所对应的IMF分量, 再将剩余IMF分量进行重构得到柴油机振动信号-For instantaneous nonlinear characteristics of vibration signals of diesel engine, the diesel engine vibration signal of the intrins
118
- 滚动轴承振动信号容易受 到随机噪声 的污染, 如 何去噪 成为滚动轴承故障诊断的关键问题之一。而传统的消噪方法可能会将信号中一些能量小的有用信号当作噪声消除, 本 文即提出 一种改进 的小波消噪方法-Rolling bearing vibration signals are easily influenced by the random noise pollution, such as any denoising become one of the key problems of rolling
421
- 针对齿轮滚动轴承等的早期损伤类故障, 提出将小波包分解作为包络分析的前置处理手段以提取振动信号的故障信息特征 。 在简述小波包基本原理的基础上, 通过仿真信号, 对振动信号的具体处理过程进行分析, 并对可能遇到的问题, 提出处理办法, 然后应用于诊断实例 。 -Early damage fault for rolling bearings and other gear, the proposed wavelet packet decomposition as pre-processing mea
433
- 融合小波能谱熵和支持向量机SVM的特点提出了基于小波能谱熵的SVM故障诊断方法. 利用转子试验台对转子典型振动故障进行模拟并采集振动数据提取其振动信号的小波能谱熵作为特征向 量-Fusion wavelet energy entropy and support vector machine SVM is proposed based on the characteristics of wavelet energy entropy SVM fault diagnosis method. U
dual-tree
- 首先将非平稳的故障振动信号进行双树复小波包分解,得 到不同频带的分量;然后对每个分量求其峭度值和相关系数并进行比较;最后选取峭度值和相关系数较大的分量 进行软阈值降噪和双树复小波包重构,即可有效地消除振动信号中噪声的干扰,同时保留信号中的有效信息即实 现了故障特征信息的提取。-In view of the above situation, a new fault diagnosis method is proposed based on dual-tree complex wa
energy-leakage--dual-tree
- 首先根据高斯白噪声频率充满整个频带的特性,通过双树复小波包变换对高斯白噪声进行分解,利用频带能量泄漏的定量分析方法,验证了双树复小波包变换具有较低的频带能量泄漏特性;其次利用双树复小波包变换逐层分解信号,对每层分解所得分量求其FFT谱的峭度,得到基于双树复小波包变换的谱峭度图,根据图中峭度最大的原则,可以自动准确的选择信号分解最佳层数和最佳分量;最后将基于双树复小波包变换的谱峭度图的故障诊断方法应用于实际工程中,对齿轮故障振动信号进行分析,选择最佳分解层数和分量后利用希尔伯特包络解调,有效准确地
xiaobobaoyuzhijiangzao
- :提出一种基于对偶树复小波块阈值的信号降噪方法,并将其成功应用于机械故障诊断中。机械设备的振动信号都或多或少地含有噪声,导致弱故障信息的提取一直是故障诊断的难点和热点。提出的降噪方法充分利用对偶树复小波变换的平移不变性和块阈值法的更优估计特性,可以获得比常规的小波降噪方法以及基于常规离散正交小波变换的 NeighBlock 降噪法更高的信噪比, 不仅能有效抑制高斯白噪声, 还能够去除冲击信号中的脉冲噪声。-:A denoising method of block thresholding bas
gundongzhoucheng
- 包络分析大多在原始振动加速度信号基础上进行, 受噪声干扰等因素的影响较大 通过对原始振动信号自相关函数作包络分析, 可以有效地抑制噪声, 突出反映故障调制特征-s. Most of the envelope analyses are based on original vibration accelera- tion signal,which is seriously influenced by noise interference. The noise is effectively sup
xiaoboshenjingwangluo
- 提出了采用小波包的方法对供暖双吸式离心水泵轴承振动信号进行去噪和提取表征 相应轴承故障的频带能量 并采用 BP 神经网络进行训练和故障识别 通过 MATLAB 进行了仿真经试验验证该方法能够有效地识别出轴承故障-The wavelet package is adoptted to De-noise and extract band energy that represent bearing fault. and the BP neural network is adopting to t
基于改进的希尔伯特振动分解的机械故障诊断方法研究
- 针对多分量机械故障振动信号的特征提取问题,介绍一种基于希尔伯特振动分解( HVD) 的时频分析方法。该方法首先利用 Hilbert 变换得到原始振动信号的解析信号,然后通过对解析信号的瞬时频率低通滤波获得信号中幅值最大分量的瞬时频率,同时经同步检测获得相应的瞬时幅值和初相位,最后经过迭代运算自适应地检测出原信号各分量的时频信息。针对 HVD 方法的边界效应问题,提出一种基于相关系数准则的波形匹配边界延拓法对其进行改进。 通过两组仿真信号分析验证了 HVD 方法对多分量非平稳信号的分解能力,同时