搜索资源列表
nannvshengshibie
- 本文通过对男性和女性声音的语音特征的研究,发现男女声的基音频率存在较大的差异,并设计了基于基音频率分析的男女声识别系统。男女声识别系统由以下三个模块电路构成:话筒放大器,低通滤波器,半波整流电路,单片机测量控制模块。话筒放大器采用NE5532P音前置芯片,对语音信号进行放大;八阶低通滤波器MAX293完成基音信号的提取;单片机STC12C5410AD实现频率测量和控制输出功能。经仿真与电路实测,男女声的识别效果良好。-In this paper, the voices of male and f
qiuxielv
- 求信号的斜率,在一个周期内求的,在matlab中实现的,是提取特征时用到的。-Seek the slope of the signal, in a demand cycle, in matlab to implement, is used when extracting features. The body s signals.
11
- 基音周期是语音信号的一个重要参数。为了在低延 时条件下准确地提取语音基音周期参数, 提出了一种基于动 态规划的单路径搜索算法-Abstract: P itch is one of the mo st impo rtant parameters fo r describing speech characteristics. A one2way p itch track ing algo rithm based on dynam ic p rogramm ing was develo
dapanjiandixinhao_ok
- 自编使用大智慧分笔明细数据统计大盘见底信号的小软件,做自定义数据引入指标,很准的!肉痛!求逐笔数据提取工具!-Self with great wisdom points pen detailed statistics signal a small software market bottomed out, do custom data into indicators, very accurate! Routong! Seek transaction-data extraction tool!
24
- 将高阶时频表示引入机械故障诊断领域。介绍了Wigner 高阶矩谱(WHOS)的概念、定义。针对多分量信号Wigner 高阶矩谱的交叉项会产生“虚假信号”,结合局域波法, 提出了一种抑制WHOS交叉项的新方法。首先对复杂信号进行预处理, 利用局域波分解方法把其分解成有限个具有单分量特性的基本模式分量,然后对每个基本模式分量计算WHOS。该方法能有效抑制WHOS时频分布的交叉项。通过仿真实验和转子的故障实验,以Wigner 双谱为例, 验证了该方法的实用性,为故障诊断的特征提取提供了新的工具-Hig
23
- 机械设备发生故障时, 故障特征的提取很重要。对于多通道的设备故障振动信号, 应用非平稳信号的盲源分离算法, 可以有效地提取各自独立的非平稳振动源,从而可以准确地进行机械故障诊断。针对不同时频分布的非平稳盲源分离算法, 比较了它们的分离效果。以转子的复合故障为例, 验证了该算法在故障诊断中可行性。-Machinery and equipment failure, the fault feature extraction is very important. Failure vibration si
64
- 在简单介绍WH-800型离心机基本结构及工作原理的基础上, 介绍了基于重构吸引子轨迹矩阵的奇异值分解技术,并引入自相关函数对现有奇异值分解技术加以改进. 通过对现场实测故障信号的分析,表 明改进的奇异值分解技术具有很好的降噪效果,能在强噪声背景环境下准确提取设备的故障特征信号, 为离心机的故障诊断提供了一种新的思路.-After a brief introduction WH-800 centrifuge basic structure and working principle, base
66
- 对结构响应信号进行连续复Morlet小波变换,根据小波系数的模极大值提取小波脊线,识别结构的瞬时频率;为降低噪音的影响,采用奇异值分解(SVD)方法进行降噪处理,建立了一种基于连续复小波变换识别时变系统 瞬时频率的方法。用一个具有时变刚度的弹簧质量系统的数值算例验证方法的有效性,随后设计了一个时变拉索 结构试验,分别对索施加线性和正弦变化的拉力,同时测试结构的冲击响应,运用提出的方法成功地识别了索的瞬时频率。数值与试验结果表明,提出的方法能有效地识别时变结构的瞬时频率,且识别方法具有一定
83
- 基于循环统计理论, 对循环平稳信号进行处理, 主要研究了信号的二阶循环统计特性, 即循环自相关函数和循环谱密度, 指出循环自相关函数不为零的循环频率对应着信号中的某些故障, 并 可以对调幅信号进行解调. 通过循环频率扫描方法提取的调制源分布在循环频率域的低频段, 其结 果可用循环频率-频率- 循环谱密度的三维图表示. 用仿真信号对该方法进行验证, 并应用于滚动轴承的内、外圈及滚动体的故障诊断, 可以有效地分离出所对应的故障特征频率.-Statistical theory based on
84
- 滚动轴承故障诊断是机械故障检测中一个重要方面。使用小波包分析和包络分析相结合的方法提取轴承微弱振动信号, 克服了传统包络分析方法易丢失信号有效成分的缺点。包络信号的细化谱较好体现了轴承故障信息。-Bearing Fault Diagnosis of mechanical fault detection in an important aspect. The use of wavelet packet analysis and envelope analysis method of combini
87
- 小波分析可同时从时域和频域两个方面对信号进行分析,结合包络分析十分适合滚动轴承的故障特征提取;基于双通道的全矢小波分析方法不仅对单通道小波分析方法具有兼容性,而且弥补了传统的基于单通道信 息进行旋转机械故障特征提取造成的信息量不完整、易导致误诊的弊端。结果表明,在针对滚动轴承外圈故障特征提取时,全矢小波分析方法较小波一包络分析方法具有一定的优势。 -Wavelet analysis simultaneously from the time domain and frequency doma
421
- 针对齿轮滚动轴承等的早期损伤类故障, 提出将小波包分解作为包络分析的前置处理手段以提取振动信号的故障信息特征 。 在简述小波包基本原理的基础上, 通过仿真信号, 对振动信号的具体处理过程进行分析, 并对可能遇到的问题, 提出处理办法, 然后应用于诊断实例 。 -Early damage fault for rolling bearings and other gear, the proposed wavelet packet decomposition as pre-processing mea
433
- 融合小波能谱熵和支持向量机SVM的特点提出了基于小波能谱熵的SVM故障诊断方法. 利用转子试验台对转子典型振动故障进行模拟并采集振动数据提取其振动信号的小波能谱熵作为特征向 量-Fusion wavelet energy entropy and support vector machine SVM is proposed based on the characteristics of wavelet energy entropy SVM fault diagnosis method. U
Study-on-compound-fault-diagnosis
- 针对滚动轴承复合故障信号特征难以分离的问题, 提出将双树复小波变换和独立分量分析( ICA) 结合的故障诊断方 法 该方法首先将非平稳的故障信号通过双树复小波变换分解为若干不同频带的分量 由于各个分量存在一定的频率混叠, 对 故障信号特征提取有很大的干扰, 进而引入 ICA 对各个分量所组成的混合信号进行盲源分离, 从而尽可能消除频率混叠 最后 对从混合信号中分离出来的独立分量信号进行希尔伯特包络解调, 即可实现对复合故障特征信息的分离和故障识别-Aiming at the diff
dual-tree
- 首先将非平稳的故障振动信号进行双树复小波包分解,得 到不同频带的分量;然后对每个分量求其峭度值和相关系数并进行比较;最后选取峭度值和相关系数较大的分量 进行软阈值降噪和双树复小波包重构,即可有效地消除振动信号中噪声的干扰,同时保留信号中的有效信息即实 现了故障特征信息的提取。-In view of the above situation, a new fault diagnosis method is proposed based on dual-tree complex wa
energy-leakage--dual-tree
- 首先根据高斯白噪声频率充满整个频带的特性,通过双树复小波包变换对高斯白噪声进行分解,利用频带能量泄漏的定量分析方法,验证了双树复小波包变换具有较低的频带能量泄漏特性;其次利用双树复小波包变换逐层分解信号,对每层分解所得分量求其FFT谱的峭度,得到基于双树复小波包变换的谱峭度图,根据图中峭度最大的原则,可以自动准确的选择信号分解最佳层数和最佳分量;最后将基于双树复小波包变换的谱峭度图的故障诊断方法应用于实际工程中,对齿轮故障振动信号进行分析,选择最佳分解层数和分量后利用希尔伯特包络解调,有效准确地
xiaobobaoyuzhijiangzao
- :提出一种基于对偶树复小波块阈值的信号降噪方法,并将其成功应用于机械故障诊断中。机械设备的振动信号都或多或少地含有噪声,导致弱故障信息的提取一直是故障诊断的难点和热点。提出的降噪方法充分利用对偶树复小波变换的平移不变性和块阈值法的更优估计特性,可以获得比常规的小波降噪方法以及基于常规离散正交小波变换的 NeighBlock 降噪法更高的信噪比, 不仅能有效抑制高斯白噪声, 还能够去除冲击信号中的脉冲噪声。-:A denoising method of block thresholding bas
xiaoboshenjingwangluo
- 提出了采用小波包的方法对供暖双吸式离心水泵轴承振动信号进行去噪和提取表征 相应轴承故障的频带能量 并采用 BP 神经网络进行训练和故障识别 通过 MATLAB 进行了仿真经试验验证该方法能够有效地识别出轴承故障-The wavelet package is adoptted to De-noise and extract band energy that represent bearing fault. and the BP neural network is adopting to t
234
- 心电信号特征点提取特征值和结合多种算法处理信号的研究-Study on the algorithm of ecg signal feature point extraction
345
- 心电信号处理和特征信息提取方法的研究及心电工作站的研制-Ecg signal processing and feature information extraction method of research and development of ecg workstation