搜索资源列表
23
- 机械设备发生故障时, 故障特征的提取很重要。对于多通道的设备故障振动信号, 应用非平稳信号的盲源分离算法, 可以有效地提取各自独立的非平稳振动源,从而可以准确地进行机械故障诊断。针对不同时频分布的非平稳盲源分离算法, 比较了它们的分离效果。以转子的复合故障为例, 验证了该算法在故障诊断中可行性。-Machinery and equipment failure, the fault feature extraction is very important. Failure vibration si
433
- 融合小波能谱熵和支持向量机SVM的特点提出了基于小波能谱熵的SVM故障诊断方法. 利用转子试验台对转子典型振动故障进行模拟并采集振动数据提取其振动信号的小波能谱熵作为特征向 量-Fusion wavelet energy entropy and support vector machine SVM is proposed based on the characteristics of wavelet energy entropy SVM fault diagnosis method. U
基于改进的希尔伯特振动分解的机械故障诊断方法研究
- 针对多分量机械故障振动信号的特征提取问题,介绍一种基于希尔伯特振动分解( HVD) 的时频分析方法。该方法首先利用 Hilbert 变换得到原始振动信号的解析信号,然后通过对解析信号的瞬时频率低通滤波获得信号中幅值最大分量的瞬时频率,同时经同步检测获得相应的瞬时幅值和初相位,最后经过迭代运算自适应地检测出原信号各分量的时频信息。针对 HVD 方法的边界效应问题,提出一种基于相关系数准则的波形匹配边界延拓法对其进行改进。 通过两组仿真信号分析验证了 HVD 方法对多分量非平稳信号的分解能力,同时