搜索资源列表
Wind-speed-prediction
- 基于最小二乘支持向量机理论,结合某风电场实测风速数据,建立了最小二乘支持向量机风速预测模型。对该风电场的风速进行了提前1h的预测,其预测的平均绝对百分比误差仅为8.55 ,预测效果比较理想。同时将文中的风速预测模型与神经网络理论、支持向量机(support vector machine,SVM)理论建立的风速预测模型进行了比较。仿真结果表明,文中所提模型在预测精度和运算速度上皆优于其他模型。 -Based on least squares support vector machine the
Robust-Beamforming-via-Semidefinite
- 现有的向量加权稳健波束形成方法只有在指向误差较小的情况下才能有效估计目标的信号功率;矩阵加权波束形成方法在指向误差较大时,虽然可以估计目标的信号功率,但是它的系统实现复杂度与向量加权稳健波束形 成方法相比较大。针对以上问题,该文提出基于半正定秩松弛(SDR)方法的稳健波束形成,该方法优化模型中的目标函数与Capon 算法的目标函数相同,优化变量为加权向量的协方差矩阵,并约束方向图的主瓣幅度波动范围、旁瓣电平,协方差矩阵的秩为1。-The existing vector weighted ro
一份关于机器学习“模型再训练”的终极指南
- 机器学习模型的训练,通常是通过学习某一组输入特征与输出目标之间的映射来进行的。一般来说,对于映射的学习是通过优化某些成本函数,来使预测的误差最小化。