搜索资源列表
Image-Hashing-based-on-Human-Visual-System
- 提出一种基于视觉特性的图像摘要算法,增大人眼敏感的频域系数在计算图像Hash时的权重,使得图像Hash更好地体现视觉特征,并提高鲁棒性。将原始图像的分块DCT系数乘以若干由密钥控制生成的伪随机矩阵,再对计算的结果进行基于分块的Watson人眼视觉特性处理,最后进行量化判决产生固定长度的图像Hash序列。本算法比未采用视觉特性的算法相比,提高了对JPEG压缩和高斯滤波的鲁棒性。图像摘要序列由密钥控制生成,具有安全性。
The_Status_Quo_of_Machine_Learning_of_Artificial_I
- 机器学习是人工智能的一个子领域,是人工智能中非常活跃且范围甚广的主要核心研究领域之一,也是现代智能系统的关键环节和瓶颈。机器学习吸取了人工智能、概率统计、计算复杂性理论、控制论、信息论、哲学、生理学、神经生物学等学科的成果,主要关注于开发一些让计算机可以自动学习的技术,并通过经验提高系统自身的性能。本文介绍了机器学习的概念、基本结构和发展,以及各种机器学习方法,包括机械学习、归纳学习、类比学习、解释学习、基于神经网络的学习以及知识发现等,并简单叙述了机器学习的相关算法,包括决策树算法、随机森林算