搜索资源列表
cheswithdiffrentsurpport
- 模式识别领域的通用数据集,在不同的支持度下的频繁项集。-The field of pattern recognition of common data sets, at different levels of support under the frequent itemsets.
dat_banana
- 香蕉形(banana)标准数据集,用于测试机器学习与模式识别算法。-Banana-shaped standard data set for testing machine learning and pattern recognition algorithm.
滤波人脸识别
- 利用orl图像数据集,进行图像滤波,人脸检测。
]ORL+PCA+SVM-11
- 编写了用户界面程序实现ocr人脸数据集的识别,使用了svm分类器(A user interface program is developed to realize the recognition of OCR face data set, and the SVM classifier is used)
BP神经网络手写数字识别
- 使用bp神经网络算法识别手写阿拉伯数字图像,三层的误差反馈神经网络,可输出准确率,数据集为60000条数据,每条数据是一张28*28的图片(The BP neural network algorithm is used to recognize handwritten Arabia digital images, and the error feedback neural network of three layers can output the accuracy rate. The data
dataset_SkodaMiniCP
- skoca活动识别数据集 包括开车门 关车门等动作(The skoca activity recognition data set includes the action of the door of the car door and so on)
UCI的光学字符识别数据集
- 其目标是将大量黑白矩形像素显示器中的每一个识别为英文字母中的26个大写字母之一。字符图像基于20种不同的字体,并且这20种字体中的每个字母随机失真以产生20,000个独特刺激的文件。每个刺激被转换成16个基本的数字属性(统计矩和边缘计数),然后将其缩放以适合从0到15的整数值范围。我们通常在前16000个项目上进行训练,然后使用结果模型预测剩余的4000个字母类别。请参阅上面引用的文章以获取更多详细信息。(The objective is to identify each of a large
utf8''Traffic-sign-recognition
- 项目基于Tensorflow进行实现。 #### 文件说明: --- * input_data.py: 图片的输入 * traffic_sign_cnn.py: 用cnn进行训练分类 * testDemo.py: 用于测试已经训练出来的模型,输入单个图片输出结果,并分类到文件夹 #### 数据集说明: --- * 这里是列表文本使用的是比利时的交通标志数据集,可以网上自己找,里面有62个分类。 #### 网络说明: --- *
MATLAB实现鸢尾花数据集分类
- 基于BP算法的鸢尾花数据集分类,在MATLAB平台下编程实现BP算法,可计算识别率。(Based on the BP algorithm, iris data set is classified. Under the MATLAB platform, the BP algorithm is programmed and the recognition rate can be calculated.)
人头训练正负样本数据集
- 用来训练人头识别模型的正负样本数据集,正样本数据已经resize化。(The positive and negative sample data set is used to train the head recognition model, and the positive sample data has been resize.)
表情识别数据集
- 整个数据库一共有213张图像,10个人,全部都是女性,每个人做出7种表情,这7种表情分别是: sad, happy, angry, disgust,surprise, fear, neutral. 每个人为一组,每一组都含有7种表情,每种表情大概有3,4张样图。这样每组大概20张样图,目前在这个数据库上的识别率已经很高了,不管是person independent 或者是person dependent。识别率都很高。这个数据库可以用来熟悉人脸表情识别的一些基础知识,包括特征提取,分类等。
Geolife Data 1.3
- Geolife GPS 轨迹数据集–用户指南 这一 GPS 轨迹数据集是在 (微软研究亚洲) Geolife 项目中收集的, 178 用户在四年 (2007年4月至 2011年10月) 期间。该数据集的 GPS 轨迹由一个时间戳点序列表示, 每一个都包含纬度、经度和高度信息。该数据集包含17621个轨迹, 总距离为1251654公里, 总持续时间为48203小时。该轨迹数据集可以应用于移动模式挖掘、用户活动识别、基于位置的社交网络、位置隐私和位置推荐等多个研究领域。(Geolife GPS t
手写数字数据集的光学识别_KNN
- 手写数字数据集的光学识别_KNN,有数据集,有源代码(Optical Recognition of Handwritten Digital Data Set _KNN, Data Set, Source Code)
基于SVM的光学字符识别
- OCR光学字符识别是将纸上的文字扫描成数据集,然后对数据集进行分类,最终自动识别字符的技术。(OCR optical character recognition is a technology that scans text on paper into data sets, then classifies the data sets, and finally automatically recognizes characters.)
MNIST_data
- MNIST数据集是一个手写体数据集,这个数据集由四部分组成,分别是一个训练图片集,一个训练标签集,一个测试图片集,一个测试标签集;我们可以看出这个其实并不是普通的文本文件或是图片文件,而是一个压缩文件,下载并解压出来,我们看到的是二进制文件。其中包含60000张手写体识别数字图片。(MNIST data set is a handwritten data set, which consists of four parts: a training picture set, a training l
3-基于高斯混合模型的语音识别
- 基于高斯混合模型的语音识别,有完整的数据集和matlab代码(Speech recognition based on Gaussian mixture model, complete data set and matlab code)
MNIST数据集
- 手写数字识别数据集的训练集和测试集,关于BP神经网络(Handwritten digit recognition data set)
数据集
- 对网上一些数据集的整理,分类和归纳,对目标识别方向有用(Sorting, classifying and summarizing some data sets on the Internet, useful for target recognition)
基于MATLAB的手写识别(可以自行添加数据集)
- 本案例使用MATLAB的GUI设计的一个手写板,利用BP神经网络实现手写识别的项目,案例中可以利用手写板自己建立数据集,并且完成训练来添加字库。
使用DEAP数据库进行情感识别
- 使用deap数据集进行情感识别,Python语言(Using the deep data set for emotion recognition, python language)