搜索资源列表
九宫格 机器学习 分类实现
- 九宫格 机器学习 分类实现
PCA_LDA.rar
- 《机器学习》课上的作业,PCA和LDA降维,尽管网上很多,但很少注释,另外细节上也没注意。这里有很详细的注释。另外还附上一个Naive贝叶斯分类器,大家可以作比较。附带的图像包是OLR人脸。ReducedDim为想要提取的特征数,不是百分比!," Machine learning" classes on the homework, PCA and LDA dimensionality reduction, even though a lot of online, but f
FuzzyNNClassifier.rar
- 模糊K近邻分类器,模式识别和机器学习经常要使用的一个分类器,K neighbor fuzzy classifier, pattern recognition and machine learning are often used in a classifier
LDA
- 线性判别分析(LDA)用于特征选择,可以对数据集或者图像提取有用特征,用于分类或者聚类等机器学习应用中-Linear Discriminant Analysis (LDA) for feature selection, application in dataset or image feature extraction, for classification or clustering applications in machine learning
maxent-2.5.1
- 最大熵分类器,实现对文本的分类,很好的机器学习算法。-Maximum Entropy classifier, the realization of the text classification, a good machine learning algorithm.
svmclass
- 采用经典的机器学习分类算法SVM,对训练样本进行训练和学习,来实现对预定目标的分类。-Using the classic machine learning classification algorithm SVM, the training samples for training and study to achieve the intended target of the classification.
Id3
- 数据挖掘、机器学习中经典的ID3算法,分类器java实现-Data mining, machine learning in the classical ID3 algorithm java classifier to achieve
source
- ID3算法实现机器学习和分类,根据训练结果,自动生成可以运行的C++语言代码。-ID3 machine learning algorithm and classification, according to the training results, it can run automatically generated C++ language code.
SVM
- 使用Hadoop平台的Spark组件,实现机器学习分类算法SVM(支持向量机),使用的编程语言为Scala。(Using the Hadoop platform Spark components, the machine learning classification algorithm SVM (support vector machines), using the programming language for Scala.)
Logistic Regression
- 机器学习中的一种对数据进行分类的模型,非常好用,可以运行,推荐下载。(A machine learning model for data classification, very easy to use, you can run, it is recommended to download.)
SVM神经网络的数据分类预测-葡萄酒种类识别
- SVM神经网络的数据分类预测-葡萄酒种类识别(SVM neural network data classification prediction - wine type identification)
RANSIC1
- ransac分类器,应用于二维点,自带检测算法(RANSAC classifier, applied to two-dimensional points, comes with detection algorithms)
机器学习之西瓜分类
- 是一个将西瓜分类的学习算法。有详细的注释。(Is a classification of watermelon learning algorithm.)
高风代码
- 本内容是有关机器学习的包含贝叶斯分类器,随机森林,支持向量机,神经网络,logistic多元回归等(The contents of this paper are machine learning, including Bayesian classifier, random forest, support vector machines, neural network, logistic multiple regression and so on)
大数据下的机器学习算法综述
- 研究大数据环境下的机器学习算法成为学术界和产业界共同关注的话题. 文中主要分析和总结当前用于处理大数据的机器学习算法的研究现状.(Developing machine learning algorithms for big data is a research focus. In this paper, the state of the art machine learning techniques for big data are introduced and analyzed.)
ELM分类器
- ELM是基于深度学习的分类器,运算速度快。 在B_data.m里导入待分类矩阵B.mat(1-n列为特征值,n列为标签);运行B_data.m;再打开fuzzyEn_main.m并运行即可。(ELM is based on depth learning classifier, computing speed. In B_data.m imported matrix to be classified B.mat (1-n as eigenvalues, n as a label); Run B
机器学习
- 用于红酒分类,机器学习,用tensorflow,人工智能小白(For wine classification, machine learning)
机器学习Python程序
- 覆盖了基本常用的机器学习算法。包括线性回归与分类算法;决策树;多种降维算法;优化算法;强化学习等多类算法的Python代码。(It covers the commonly used machine learning algorithms. Including linear regression and classification algorithm; decision tree; a variety of dimensionality reduction algorithm; optimiza
DBN知识M
- matlab编写的对于机器学习的各种程序,帮助理解与应用。(Matlab for machine learning programs, to help understand and apply.)
机器学习实战书+源代码
- 机器学习横跨计算机科学、工程科学和统计学等多个学科,需要多学科的专业知识。在需要解释并操作数据的领域都或多或少可以运用到机器学习,通过这本书可以系统地学习基于python语言的机器学习的相关知识(Machine Learning in Action written by Peter Harringto. Machine learning covers many subjects, such as computer science, engineering science and statisti